TECHNICAL MEMORANDUM

To:Ian McAllister, Ashleigh Crompton, Mike Champion,
Mark Zan and Ryan Schucroft (Woodfibre LNG)Date: 4 July 2025From:Holly Pelletier, Cheng Kuang and Patrick Mueller (Lorax)Project #: A633-9

Subject: PE-111578 Weekly Discharge and Compliance Report #70 for June 22 – 28

Waste Discharge Authorization (WDA) Effluent Permit PE-111578 was issued by the British Columbia Energy Regulator (BCER) to Woodfibre LNG on February 9, 2024. The associated WDA discharge and compliance monitoring program is conducted by on-site Environmental Monitors (Roe Environmental) that are sub-contracted to the civil works contractor (LB LNG). Analytical samples are submitted by Roe Environmental to ALS Environmental in Burnaby, BC, for testing. Lorax Environmental provides water quality database management and WDA compliance reporting services to Woodfibre LNG.

This technical memorandum (Report #70) was prepared by Lorax Environmental and summarizes WDA monitoring conducted for the period of June 22 - 28. Monitoring data and pending results from prior monitoring periods available at the time of reporting are tabulated and included as appendices to this memorandum. Report #70 has been prepared to meet the requirements specified in Condition 4.2 of PE-111578:

"The Permittee shall summarize the results of the discharge and compliance monitoring program in a report that shall be submitted to the BCER weekly over the term of this permit. Reports must include suitable tabulated data. The table must include any applicable regulatory limits/guidelines e.g. permit limits, BC Water Quality Guidelines etc. Any exceedances of respective regulatory limits/guidelines must be clearly highlighted. Any missed sampling events/missing data must be identified with an explanation provided. Reporting frequency may be reduced upon a history of compliance and by written confirmation from the BCER. These reports shall be submitted to Waste.Management@bc-er.ca. A copy of the reports shall be provided to each First Nation consulted with regarding this subject permit, and also made publicly available on the Woodfibre LNG Environmental Reporting webpage."

Site layout and water management figures, and site images are included in Appendix A. Monitoring results are tabulated in Appendix B through Appendix G for contact water and treated water samples.

1. Current Conditions

1.1 Water Management Infrastructure

The Construction Phase of the Woodfibre LNG Export Facility commenced in October 2023. Shoring works along the foreshore areas were initiated in December 2023, and in early 2024 construction of water management infrastructure commenced. Land-based construction occurs within two water management areas east and west of Mill Creek, referred to as the east and west catchments, respectively. Non-contact water is intercepted and diverted around the construction areas to Howe Sound and Mill Creek. Stormwater runoff collected within the east and west catchment areas (7.12 and 5.92 ha, respectively) is managed as site contact water and is conveyed to the East Wastewater Treatment Plant (WWTP) for treatment or to the East and West Sedimentation Ponds for settling of suspended particulate. Discharge to Howe Sound from the East and West Sedimentation Ponds commenced April and October 2024, respectively.

Non-contact water from the slopes above and outside the Woodfibre LNG construction area is intercepted by diversion ditches and conveyed to Howe Sound or Mill Creek. Diversion ditches for the west catchment convey water to Mill Creek at station OUT-06, or to Howe Sound at station OUT-02 (Appendix A, Figure 1). During heavy precipitation non-contact water is also conveyed to Howe Sound via station OUT-01. East of Mill Creek, non-contact water is intercepted and diverted around the east catchment along pre-existing road ditches that flow to East Creek or Mill Creek. To facilitate the replacement of the East Creek discharge culvert at OUT-12 (station SW-04), the lower reach of East Creek was temporarily diverted to an adjacent culvert, OUT-11, on September 17, 2024.

The East WWTP was commissioned in April 2024 and the West WWTP was commissioned August 2024. Operation of the West WWTP was subsequently suspended September 25, 2024 for a temporary reconfiguration to conduct pilot-scale evaluations of alternative treatment processes. The evaluations were completed April 2025 and did not yield improved treatment outcomes; therefore, the original treatment process has been maintained. Lower than expected volumes of contaminated contact water have been encountered during construction, therefore operation of the West WWTP remains suspended and all site waters that require treatment are directed to the East WWTP with treated effluent discharged to the East Sedimentation Pond

The east and west catchments contact water conveyance ditches described in PE-111578 were designed to transport non-contaminated contact water (*i.e.*, stormwater) to the East and West Sedimentation Ponds and will be constructed following completion of site preparation activities (*e.g.*, site grading, bedrock excavation) along the ditch lines. Until the ditches are operational, contact waters within the catchments are managed to remain on site using a system of berms, sumps, temporary ditches and baker tanks for intermediate storage, and are then directed to the East WWTP for treatment, or the East and West Sedimentation Ponds prior to discharge.

Discharge from the East and West Sedimentation Ponds is controlled using pumps. Prior to water management upgrades that were implemented during the week of June 22 - 28, water stored in the ponds was pumped to a TSS settling system prior to discharge through the authorized outfall structures associated with each pond. Some of the TSS clarified water was recirculated back to the ponds or was re-used for construction (*e.g.*, dust suppression), and this will continue with the revised configuration. Each sedimentation pond has an associated authorized discharge location (stations SP-E-OUT and SP-W-OUT) with an initial dilution zone (IDZ) where discharged water mixes with Howe Sound surface waters. The IDZ is defined in PE-111578 and extends in a 150 m radius from each point of discharge into Howe Sound.

Flocculant-based TSS settling systems were used at the East and West Sedimentation Ponds to remove TSS from pond effluent. The first West Sedimentation Pond TSS settling system (ESC) was commissioned for use on September 25, 2024, with an 820 m³/day installed capacity. An additional TSS settling system (W500GPM) was commissioned for use at the West Sedimentation Pond on November 28, 2024, and provided an additional 2,725 m³/day installed capacity for clarifying water. A third TSS settling system (E500GPM) was commissioned for use at the East Sedimentation Pond on December 4, 2024, also with 2,725 m³/day installed capacity. The E500GPM and W500GPM TSS settling systems were decommissioned during the monitoring period (June 22 – 28) and replaced by a single large TSS settling system (2700GPM) at the West Sedimentation Pond that will clarify all non-contaminated construction contact water prior to discharge at SP-W-OUT.

The fully built 2700GPM TSS settling system will have the installed capacity to clarify 15,000 m³/day of contact water, with the same settling process that was used in the systems that have been replaced. The 2700GPM system will consist of six parallel treatment trains, each with an installed capacity of 2,450 m³/day. The number of active trains will be matched to contact water flows. Only one train will be operated during dry conditions or when contact water flows are below approximately 2450 m³/day, whereas at higher flows additional trains will be activated as needed to match the influent volumes. The individual treatment trains will be commissioned in stages. Commissioning and pilot testing for the first train of the 2700GPM system commenced during the monitoring period (June 22 - 28).

The construction phase water management layout and monitoring stations are shown in Appendix A, Figure 1. Contact water collection and dewatering locations and photographs of the sedimentation ponds are shown in Appendix A, Figure 2 through Figure 5.

1.2 Weather and Water Management

Generally warm and sunny weather conditions were observed during the June 22 - 28 monitoring period, with light precipitation recorded on June 24 (0.4 mm), June 25 (3.4 mm), June 26 (1.4 mm) and June 27 (4.8 mm). The daily weather conditions are summarized in Table 1.

Date	Precipitation (mm)	Max. Temp (°C)	Min. Temp (°C)	Weather Description
2025-06-22	0	16.9	12.8	Overcast
2025-06-23	0	20.9	13.2	Mix of sun and cloud
2025-06-24	0.4	22.5	12.2	Mix of sun and cloud
2025-06-25	3.4	17.7	14.5	Overcast, Showers
2025-06-26	1.4	17.9	13.3	Mix of sun and cloud
2025-06-27	4.8	16.4	12.1	Overcast, Showers
2025-06-28	0	21.2	12.3	Mix of sun and cloud

Table 1: Summary of Certified Project Area (CPA) Daily Weather Conditions.

Note: Data retrieved from the Stantec Woodfibre site weather station.

From June 22 – 28, the East Sedimentation Pond received non-contaminated contact water from Area 1100 North Collection Sump and recirculated effluent from the East WWTP (Appendix A, Figure 2). Non-contaminated contact waters from the Area 4100 Collection Sump were directed to the West Sedimentation Pond, as well as recirculated effluent from the 2700GPM TSS settling system (Appendix A, Figure 3). During the monitoring period (June 22 – 28), no water from the East Sedimentation Pond was transferred to the West Sedimentation Pond (Appendix B, Table B-6). The E500GPM TSS settling system was decommissioned and effluent was not discharged to Howe Sound via station SP-E-OUT during the monitoring period.

Routine operation of the East WWTP continued during the monitoring period (June 22 - 28). Concrete contact waters, M11 Hydro Milling effluent and water from the construction water baker tank were periodically directed to the East WWTP for treatment, as well as water stored in the East Sedimentation Pond (Appendix A, Figure 2 and Figure 3). East WWTP treated effluent was discharged to the East Sedimentation Pond each day from June 22 - 28. Daily water volumes processed by the East WWTP are provided in Appendix B (Table B-6).

Commissioning and pilot testing of the 2700GPM TSS settling system commenced during the monitoring period (June 22 – 28). West Sedimentation Pond effluent was clarified through the 2700GPM system each day and was recirculated back to the West Sedimentation Pond or reclaimed and used for construction purposes (*e.g.*, road dust suppression, fill compaction, or hydrovac truck operation). The W500GPM TSS settling system was decommissioned and the West ESC (150 GPM) TSS settling system was not operational during the monitoring period. There was no discharge to Howe Sound via station SP-W-OUT during the monitoring period. From June 22 – 28, a total of 130 m³ of clarified effluent was reclaimed for construction use. Daily clarified effluent volumes from the TSS settling systems and volumes of reclaimed water are provided in Appendix C (Table C-6).

2. Monitoring Summary

The locations of compliance and supplementary monitoring stations are shown on Figure 1. Monitoring is conducted by the on-site Environmental Monitors (Roe Environmental). Analytical samples are submitted by Roe Environmental to ALS Environmental in Burnaby, BC, for testing. The following compliance and supplementary monitoring stations are currently being monitored:

- Non-contact diversion ditch outlet monitoring stations (OUT-01, OUT-02, OUT-06, and OUT-11). East Creek water was temporarily diverted to OUT-11 on September 17, 2024, and is monitored at the inlet to temporary diversion (station SW-04), therefore OUT-11 is not currently monitored.
- Creek water monitoring stations for Woodfibre, Mill and East Creek (SW-01, SW-02, SW-03, SW-04, SW-07).
- Contact water monitoring locations (SP-E-IN, E500GPM-IN, E500GPM-OUT, WWTP-E-IN, WWTP-E-OUT, SP-W-IN, 2700GPM-IN, 2700GPM-OUT, ESC-W-IN, ESC-W-OUT, W500GPM-IN and W500GPM-OUT).
- Effluent compliance stations (SP-E-OUT and SP-W-OUT).
- Howe Sound reference and IDZ monitoring stations (WQR1, WQR2, IDZ-E1, IDZ-E2, IDZ-W1, and IDZ-W2).

The influent culverts for East and West Sedimentation Ponds are not operational and the associated influent stations defined in PE-111578 (SP-E-IN-1, SP-E-IN-2, SP-W-IN-1 and SP-W-IN-2) have been replaced with temporary influent monitoring stations SP-E-IN and SP-W-IN (East and West Sedimentation Pond, respectively) located in-pond, at the influent end of each pond.

Two flocculant-based TSS settling systems are used at the West Sedimentation Pond (ESC and 2700GPM) as described in Section 1.1. The W500GPM TSS settling system was decommissioned during the monitoring period (June 22 - 28) and replaced by the larger 2700GPM TSS settling system. Influent and effluent are monitored for each system at stations ESC-W-IN, ESC-W-OUT, 2700GPM-IN and 2700GPM-OUT. The TSS settling system (E500GPM) was also decommissioned during the monitoring period (June 22 - 28) (Section 1.1). Prior to decommissioning, influent and effluent for the W500GPM and E500GPM systems were monitored at stations E500GPM-IN, E500GPM-OUT, W500GPM-IN and W500GPM-OUT. The TSS settling system stations are supplemental to the PE-111578 monitoring requirements and are monitored at the discretion of field staff.

Water quality was monitored at stations SP-E-IN, WWTP-E-IN, WWTP-E-OUT, SP-W-IN, 2700GPM-IN, and 2700GPM-OUT during the monitoring period (June 22 – 28). Sampling dates and parameters tested are summarized in Table 2.

Overall, the PE-111578 monitoring requirements that were applicable during the monitoring period (June 22 - 28) were met. The initial high frequency monitoring requirements outlined in effluent permit PE-111578 for the sedimentation pond, WWTP and IDZ stations have been met. BCER has approved the implementation of low-frequency (*i.e.*, monthly) monitoring requirements specified in PE-111578 for all parameters, except for metals, hexavalent chromium and

methylmercury which will continue to be monitored weekly at sedimentation pond and WWTP stations.

Daily field parameters and a weekly analytical sample were not collected at the east and west catchment effluent stations (SP-E-OUT and SP-W-OUT, respectively) as there was no discharge to Howe Sound during the monitoring period (June 22 - 28). Daily field parameters were not collected at the effluent station of the East WWTP (WWTP-E-OUT) on June 26 as it was not operational at the time of monitoring. Daily field parameters and a weekly analytical sample were not collected at the influent and effluent stations of the West WWTP (WWTP-W-IN and WWTP-W-OUT, respectively) as it was not operational during the monitoring period.

Sampling Date	Sample	Description	Parameters Tested	Monitoring Frequency
	SP-E-IN	East Sedimentation Pond influent monitored at cell 1 of the pond	Field Parameters.	D
Luna 22, 2025	WWTP-E-IN	East WWTP at the influent meter box	Field Parameters.	D
June 22, 2025	WWTP-E-OUT	East WWTP at the effluent meter box	Field Parameters.	D
	SP-W-IN	West Sedimentation Pond influent monitored at cell 1 of the pond	Field Parameters.	D
	SP-E-IN	East Sedimentation Pond monitored at cell 1 of the pond	Field Parameters.	D
-	WWTP-E-IN	East WWTP at the influent meter box	Field, Physical & General Parameters, VH & BTEX, EPHs & PAHs, Total, Dissolved and	$D, W_1, W_2,$
June 23, 2025	WWTP-E-OUT	East WWTP at the effluent meter box	Speciated Metals, VOCs, Methylmercury, Dioxins & Furans.	W3
June 23, 2023	SP-W-IN	West Sedimentation Pond influent monitored at cell 1 of the pond	Field Parameters.	D
-	2700GPM-IN	2700GPM TSS settling system at the influent meter box	Field, Physical & General Parameters, VH & BTEX, EPHs & PAHs, Total, Dissolved and	Р
	2700GPM-OUT	2700GPM TSS settling system at the effluent meter box	Speciated Metals, VOCs, Methylmercury, Dioxins & Furans.	
	SP-E-IN	East Sedimentation Pond monitored at cell 1 of the pond	Field Parameters.	D
June 24, 2025	WWTP-E-IN	East WWTP at the influent meter box	Field Parameters.	D
WWTP-E-OUT		East WWTP at the effluent meter box		
	SP-W-IN	West Sedimentation Pond influent monitored at cell 1 of the pond	Field Parameters.	D
	SP-E-IN	East Sedimentation Pond monitored at cell 1 of the pond	Field Parameters.	D
WWTP-E-O	WWTP-E-IN	East WWTP at the influent meter box	Field Parameters.	D
	WWTP-E-OUT	East WWTP at the effluent meter box	Field Parameters.	D
June 25, 2025	SP-W-IN	West Sedimentation Pond influent monitored at cell 1 of the pond	Field Parameters.	D
	2700GPM-IN	2700GPM TSS settling system at the influent meter box	Field Parameters.	Р
	2700GPM-OUT	2700GPM TSS settling system at the effluent meter box	Field Parameters.	P
_	SP-E-IN	East Sedimentation Pond influent monitored at cell 1 of the pond	Field Parameters, Total, Dissolved and Speciated Metals, Methylmercury.	D, W3
	WWTP-E-IN	East WWTP at the influent meter box	Field Parameters.	D
June 26, 2025	SP-W-IN	West Sedimentation Pond influent monitored at cell 1 of the pond	Field Parameters, Total, Dissolved and Speciated Metals, Methylmercury.	D, W ₃
	2700GPM-IN	2700GPM TSS settling system at the influent meter box	E ald Dammatan	Р
	2700GPM-OUT	2700GPM TSS settling system at the effluent meter box	Field Parameters.	P
	SP-E-IN	East Sedimentation Pond influent monitored at cell 1 of the pond	Field Parameters.	D
	WWTP-E-IN	East WWTP at the influent meter box	Field Parameters.	D
June 27, 2025	WWTP-E-OUT	East WWTP at the effluent meter box		
<i>,</i>	SP-W-IN	West Sedimentation Pond influent monitored at cell 1 of the pond	Field Parameters.	D
	2700GPM-IN	2700GPM TSS settling system at the influent meter box	Field Parameters.	Р
	2700GPM-OUT	2700GPM TSS settling system at the effluent meter box		I
	SP-E-IN	East Sedimentation Pond influent monitored at cell 1 of the pond	Field Parameters.	D
	WWTP-E-IN	East WWTP at the influent meter box	Field Parameters.	D
June 28, 2025	WWTP-E-OUT	East WWTP at the effluent meter box		
June 20, 2023	SP-W-IN	West Sedimentation Pond influent monitored at cell 1 of the pond	Field Parameters.	D
	2700GPM-IN	2700GPM TSS settling system at the influent meter box	Field Parameters.	Р
	2700GPM-OUT	2700GPM TSS settling system at the effluent meter box		1

Notes: Monitoring frequency requirements under PE-111578 are indicated as follows: D – daily monitoring of field parameters at WWTP and sedimentation pond influent and effluent stations. M – monthly monitoring for all parameters at WWTP, sedimentation pond and receiving environment stations. W_1 – initial high frequency monitoring for physical parameters at WWTP and sedimentation pond influent and effluent stations. W_2 – initial high frequency monitoring for all parameters at WWTP and sedimentation pond influent and effluent stations. W_3 – high frequency monitoring for metals, chromium speciation and methylmercury at WWTP and sedimentation pond influent and effluent stations, effective June 25, 2025. P – periodic monitoring for targeted parameters that is supplementary to PE-111578 requirements.

3. Water Quality Results

3.1 Screening and Reporting Overview

Water quality and flow monitoring results are screened against field quality control (QC) criteria, benchmark values, operational minimum discharge objectives (MDOs) that the WWTPs are currently being operated to meet, PE-111578 discharge limits, as well as Canadian, Federal and BC water quality guidelines (WQGs). All water quality data are recorded in the Woodfibre LNG environmental monitoring database. However, for brevity, a sub-set of the results are presented in the weekly report appendices. Results are reported for parameters with a freshwater, estuarine or marine water quality guideline for the protection of aquatic life, parameters with a discharge limit, parameters of potential concern (*i.e.*, dioxins and furans) as well as other parameters that are relevant for water quality interpretation.

Canadian, Federal and BC WQGs are not specified for dioxins and furans. The general term "dioxins and furans" refers to a total of 210 polychlorinated dibenzo-*p*-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) compounds. A sub-set of 17 of the most toxic PCDDs and PCDFs are typically evaluated for toxicity by converting the individual parameter concentrations to toxic equivalent (TEQ) values that are summed and evaluated as a single PCDD/F TEQ parameter. To address uncertainties for results reported as not detected, two PCDD/F TEQ values are reported. A "lower-bound PCDD/F TEQ" is calculated assuming a concentration of zero for results reported as not detected, therefore, if all 17 of the individual compounds in the sub-set are not detected the lower-bound PCDD/F TEQ will equal zero. An "upper-bound PCDD/F TEQ" is calculated assuming a concentration equal to the detection limit for results reported as not detected. These two parameters span the range of possible TEQs if one or more of the PCDDs and PCDFs are reported as not detected.

The BC WQG for total mercury is a sample-specific calculated value that is based on the concentration of methylmercury in a sample. Although an approved BC WQG for the protection of aquatic life for methylmercury has not been explicitly established, the BC Ambient Water Quality Guidelines for Mercury Overview Report indicates the total mercury WQG is derived from a methylmercury concentration threshold of 0.0001 μ g/L (0.1 ng/L) that is set at a concentration that protects fish from mercury bioaccumulation to levels that could harm wildlife that consumes fish. Therefore, if methylmercury results are reported, the 0.0001 μ g/L value is presented as a methylmercury WQG to support the interpretation of total mercury and methylmercury results.

3.2 Summary of Reported Results

Field measurements and analytical results included in this weekly report (Report #70) are listed below in Table 3. Testing for methylmercury, dioxins, furans and toxicity may require four weeks

or longer to complete. Analytical results not reported will be included in future weekly reports. Reporting of results is pending for the following samples and parameters:

- IDZ-E1, IDZ-E2, IDZ-W1, IDZ-W2, WQR1, WQR2 collected March 25 at 0.5 m below surface (chronic toxicity)
- IDZ-E1, IDZ-E2, IDZ-W1, IDZ-W2, WQR1, and WQR2 collected May 27 at 0.5 m below surface (chronic toxicity)
- SP-E-IN, WWTP-E-IN, WWTP-E-OUT, SP-W-IN, and W500GPM-OUT collected June 3 (dioxins and furans)
- SP-E-IN, WWTP-E-IN, and WWTP-E-OUT collected June 9 (dioxins and furans)
- SP-W-IN and W500GPM-OUT collected June 12 (dioxins and furans)
- SW-02, SW-03 and SW-07 collected June 17 (methylmercury, dioxins and furans)
- IDZ-W1, IDZ-W2 and WQR2 collected June 17 (methylmercury, dioxins and furans)
- SP-E-IN, WWTP-E-IN, WWTP-E-OUT, E500GPM-OUT, SP-W-IN and W500GPM-OUT collected June 19 (dioxins and furans)
- E500GPM-OUT and W500GPM-OUT collected June 19 (acute toxicity)
- WWTP-E-IN, WWTP-E-OUT, 2700GPM-IN, and 2700GPM-OUT collected June 23 (methylmercury, dioxins and furans)
- SP-E-IN and SP-W-IN collected June 26 (all analytical parameters)

Sample	Description	Sampling Date	Parameters Reported	
SP-W-IN	West Sedimentation Pond influent monitored at cell 1 of the pond			
SP-W-OUT	West Sedimentation Pond clarified effluent discharge to Howe Sound, collected at sampling port	May 19, 2025	Dioxins and Furans.	
WWTP-E-IN	East WWTP at the influent meter box	Mar. 20, 2025	Dioxins and Furans.	
WWTP-E-OUT	East WWTP at the effluent meter box	May 30, 2025	Dioxins and Furans.	
SP-W-IN	West Sedimentation Pond influent monitored at cell 1 of the pond			
SP-W-OUT	West Sedimentation Pond clarified effluent discharge to Howe Sound, collected at sampling port	June 1, 2025	Dioxins and Furans.	
OUT-01	Non-contact water diversion ditch outlet		Methylmercury.	
OUT-02	Non-contact water diversion ditch outlet	June 2, 2025	Methylmercury.	
SW-01	Lower Reach of Woodfibre Creek (near the mouth)	June 6, 2025	Methylmercury, Dioxin	
SW-04	Lower Reach of East Creek (near the outlet to the outfall culvert)	June 6, 2025	and Furans.	
E500GPM-OUT	East Sedimentation Pond 500 GPM TSS settling system at the effluent meter box	June 16, 2025	Methylmercury.	
SW-02	Lower Reach of Mill Creek (upstream of the third bridge)		Field, Physical and General Parameters,	
SW-03	Mill Creek Estuary		Total and Dissolved Metals, Hexavalent	
SW-07	Upstream Mill Creek (at the diversion inlet)		Chromium, PAHs, an VOCs.	
IDZ-W1-0.5	Howe Sound IDZ station W1; 0.5 m below surface		Field Discourse and	
IDZ-W1-2m	Howe Sound IDZ station W1; 2 m below surface	June 17, 2025		
IDZ-W1-SF	Howe Sound IDZ station W1; 2 m above the seafloor		Field, Physical and General Parameters,	
IDZ-W2-0.5	Howe Sound IDZ station W2; 0.5 m below surface		Total and Dissolved	
IDZ-W2-2m	Howe Sound IDZ station W2; 2 m below surface			
IDZ-W2-SF	Howe Sound IDZ station W2; 2 m above the seafloor		Metals, Hexavalent Chromium, PAHs, and VOCs.	
WQR2-0.5	Reference site 2; 0.5 m below surface			
WQR2-2m	Reference site 2; 2 m below surface		1005.	
WQR2-SF	Reference site 2; 2 m above the seafloor			
IDZ-E1-0.5	Howe Sound IDZ station E1; 0.5 m below surface			
IDZ-E1-2m	Howe Sound IDZ station E1; 2 m below surface			
IDZ-E1-SF	Howe Sound IDZ station E1; 2 m above the seafloor	June 18, 2025	Field and Physical	
IDZ-E2-0.5	Howe Sound IDZ station E2; 0.5 m below surface	June 10, 2025	Parameters.	
IDZ-E2-2m	Howe Sound IDZ station E2; 2 m below surface			
IDZ-E2-SF	Howe Sound IDZ station E2; 2 m above the seafloor			
SP-E-IN	East Sedimentation Pond influent monitored at cell 1 of the pond			
E500GPM-OUT	East Sedimentation Pond 500 GPM TSS settling system at the effluent meter box	June 19, 2025	Methylmercury.	
SP-W-IN	West Sedimentation Pond influent monitored at cell 1 of the pond	Julie 17, 2025	Weenly mercury.	
W500GPM-OUT	West 500 GPM TSS settling system at the effluent meter box			
WWTP-E-IN	WWTP-E-IN East WWTP at the influent meter box		Field, Physical and General Parameters, Total and Dissolved	
WWTP-E-OUT	East WWTP at the effluent meter box	June 23, 2025	Metals, Hexavalent	
2700GPM-IN	2700 GPM TSS settling system at the influent meter box		Chromium, PAHs, and	
2700GPM-OUT	2700 GPM TSS settling system at the effluent meter box		VOCs.	

Table 3:	Summary of Analytical Results Included in Weekly Discharge and Compliance Report #70.
I ubic 5.	Summary of Amarytical Results included in Weekly Discharge and Comphanee Report #70.

3.3 East Catchment

The east catchment water quality monitoring results for stations at the East Sedimentation Pond, East WWTP and the authorized discharge location are discussed in this section. Results for the sedimentation pond and authorized discharge location are screened against PE-111578 discharge limits. Parameters without a discharge limit are screened against Canadian, Federal and BC WQGs for the protection of marine water aquatic life. East WWTP monitoring results are screened against operational MDOs which are equivalent to the PE-111578 discharge limits and the lowest applicable WQGs for parameters without discharge limits. The screened water quality results for analytical samples available at the time of reporting and for field parameters collected during the monitoring period are presented in Appendix B. Exceedances of PE-111578 discharge limits and WQGs in samples of effluent discharged to Howe Sound and results received for methylmercury, dioxins and furans are summarized below.

During the monitoring period (June 22 - 28), the TSS settling system (E500GPM) was decommissioned (Section 1.1 and Section 1.2). The east catchment did not discharge during the monitoring period. East WWTP treated effluent volumes and discharge volumes from the east catchment are listed in Appendix B, Table B-6.

Field measurements were collected June 22 – 28 at multiple influent and effluent locations, as outlined in Section 2, and are tabulated in Appendix B, Table B-5. Analytical samples collected on June 23 (stations WWTP-E-IN and WWTP-E-OUT) were available at the time of reporting. Screening results for east catchment contact water quality are summarized in Table B-1 and Table B-2 of Appendix B.

Dissolved oxygen was below the lower limit of the MDO in East WWTP effluent (WWTP-E-OUT) collected June 22 – 28 except on June 23 (Appendix B, Table B-3). The depletion of dissolved oxygen was also observed in contact water during dry conditions in 2024 and is speculated to be induced by warm temperatures and limited freshwater inputs (*i.e.*, from rain) to the contact water management system during dry conditions. East WWTP treated effluent was directed to the East Sedimentation Pond and there was no discharge from the pond to Howe Sound during monitoring period (June 22 - 28).

Methylmercury results were available for clarified effluent from the E500GPM system (E500GPM-OUT) collected June 16 and June 19 and for East Sedimentation Pond influent (SP-E-IN) collected June 19 (as discussed in Report #69). Methylmercury ranged from 0.000209 to 0.000224 μ g/L, above the WQG (0.0001 μ g/L) in the E500GPM-OUT samples collected June 16 and June 19 (Appendix B, Table B-3). Clarified effluent from the E500GPM system was directed to the East Sedimentation Pond and there was no discharge from the pond to Howe Sound on June 16 nor on June 19. Total mercury concentrations are also listed in Appendix B, Table B-3 and are above the WQG. Mercury parameters are tracked in Table 4.

Dioxin and furan results were reported for East WWTP influent and effluent (WWTP-E-IN and WWTP-E-OUT, respectively) collected May 30 (as discussed in Report #66). The lower and upper bound PCDD/F TEQ concentrations in effluent discharged from the East WWTP (WWTP-E-OUT) on May 30 were 0.279 pg/L and 0.660 pg/L, respectively. Results are tabulated in Appendix B, Table B-4.

3.4 West Catchment

The west catchment water quality monitoring results for stations at the West Sedimentation Pond, the TSS settling systems (ESC and W500GPM) and West WWTP monitoring stations, and the authorized discharge location are discussed in this section. Results for sedimentation pond and TSS settling system influent and effluent stations are screened against PE-111578 discharge limits. Parameters without a discharge limit are screened against Canadian, Federal and BC WQGs for the protection of marine water aquatic life. The screened water quality results for analytical samples and field parameters are presented in Appendix C. Operation of the West WWTP is suspended (refer to Section 1.1) and monitoring results are therefore not available for the stations at this facility. Exceedances of PE-111578 discharge limits and WQGs in samples of effluent discharged to Howe Sound and results received for methylmercury, dioxins and furans are summarized below.

During the monitoring period (June 22 – 28), the W500GPM TSS settling system was decommissioned and commissioning and pilot testing of the larger replacement TSS settling system (2700GPM) commenced (Section 1.1 and Section 1.2). West Sedimentation Pond effluent was directed to the 2700GPM TSS settling system each day during the monitoring period, and clarified effluent was either recirculated to the pond or reclaimed and used for construction purposes (refer to Section 1.2). The smaller West ESC (150 GPM) TSS settling system was not operational. There were no discharges to Howe Sound from the west catchment discharge location (SP-W-OUT) during the monitoring period. Daily clarified effluent and discharge volumes from the west catchment are summarized in Appendix C, Table C-6.

Field measurements were collected June 22 - 28 at multiple influent and effluent locations, as outlined in Section 2, and are tabulated in Appendix C, Table C-5. Analytical samples collected June 23 (stations 2700GPM-IN and 2700GPM-OUT) were available at the time of reporting. Screening results for west catchment contact water quality are tabulated in Table C-1 and Table C-2 of Appendix C.

During the monitoring period (June 22 - 28), field measurements and analytical results for samples collected at station 2700GPM-OUT met PE-111578 discharge limits and WQGs.

Methylmercury results were available for West Sedimentation Pond influent (SP-W-IN) and W500GPM TSS settling system effluent (W500GPM-OUT) collected June 19 (as discussed in

Report #69). Methylmercury was $0.000819 \,\mu$ g/L in the W500GPM-OUT sample collected June 19 (Appendix C, Table C-3), which is above the WQG ($0.0001 \,\mu$ g/L). Clarified effluent from the W500GPM system was recirculated to the West Sedimentation Pond and there was no discharge from the pond to Howe Sound on June 19. The total mercury concentration is also listed in Appendix C, Table C-3 and was above the WQG.

Dioxin and furan results were reported for West Sedimentation Pond influent and effluent (SP-W-IN and SP-W-OUT, respectively) collected May 19 and June 1 (as discussed in Reports #65 and #67, respectively). The lower and upper bound PCDD/F TEQ concentrations in effluent discharged at SP-W-OUT on May 19 and June 1 ranged from 0.00269 to 0.230 pg/L and 0.623 to 0.715 pg/L, respectively. Results are tabulated in Appendix C, Table C-4.

3.5 Non-Contact Water Diversion Ditch Outlets

Non-contact water diversion ditch samples are screened against Canadian, Federal and BC WQGs for the protection of freshwater aquatic life. The analytical results, field parameters, and WQGs are summarized in Appendix D.

East Creek was temporarily diverted to OUT-11 on September 17, 2024, to facilitate replacement of the OUT-12 culvert through which East Creek previously discharged. Only East Creek water is flowing through the OUT-11 culvert. East Creek is monitored at freshwater receiving environment station SW-04 and station OUT-11 is not monitored while the diversion is in place.

Methylmercury results were available at the time of reporting for the non-contact water diversion ditch outlet samples collected at station OUT-01 on June 1 and OUT-02 on June 2 (as discussed in Report #67). Methylmercury results met the WQG and the corresponding total mercury results also met WQGs. Results are tabulated in Appendix D, Table D-1.

3.6 Freshwater and Estuarine Water Receiving Environment

Freshwater and estuarine water receiving environment samples are screened against Canadian, Federal and BC WQGs for the protection of freshwater and estuarine aquatic life. Parameter concentrations above a WQG value, but within the range of values observed in the baseline monitoring program are considered to represent the natural condition of the water and are not flagged as a possible indicator of project influence. The analytical results, field parameters, and WQGs are summarized in Appendix E (freshwater) and Appendix F (estuarine).

Analytical results were available at the time of reporting for freshwater and estuarine water samples collected at the lower freshwater reach of Mill Creek (station SW-02), the Mill Creek estuary (SW-03) and upstream on Mill Creek (SW-07) on June 17 (as discussed in Report #69).

13

Parameter concentrations met WQGs except field pH and total aluminum in the samples collected at the Mill Creek estuary (station SW-03) and at the lower freshwater reach of Mill Creek (station SW-02), respectively. Field pH in the estuary at station SW-03 (pH 6.5) was below the lower range of the WQG (pH 7.0) on June 17. Total aluminum was above the long-term freshwater WQG at SW-02 (0.0493 mg/L) on June 17.

The observed field pH and total aluminum concentrations at Mill Creek downstream stations (SW-02 and SW-03) are within ranges observed in the pre-construction baseline monitoring program for the freshwater and estuarine water receiving environment stations. The observed field pH and total aluminum concentrations are considered to represent background conditions in all samples and are not flagged as potential project-influenced exceedances of the WQGs.

Methylmercury results were available at the time of reporting for freshwater samples collected near the mouth of Woodfibre Creek and East Creek (stations SW-01 and SW-04, respectively) on June 6 (as discussed in Report #67). The methylmercury concentrations met the WQG (0.0001 μ g/L) and ranged from <0.000020 to 0.000026 μ g/L. The corresponding total mercury results also met WQGs. Results are tabulated in Appendix E, Table E-2.

Dioxin and furan results were reported for freshwater samples collected June 6 (stations SW-01 and SW-04) (as discussed in Report #67). The lower PCDD/F TEQ concentrations measured in these samples ranged were 0 pg/L and the upper bound PCDD/F TEQ concentrations ranged from 1.58 to 2.00 pg/L. The lower and upper bound PCDD/F TEQ concentrations were within the concentration ranges observed in the baseline monitoring program. Results are tabulated in Appendix E, Table E-3.

3.7 Marine Water Receiving Environment

Marine water receiving environment samples are screened against Canadian, Federal and BC WQGs for the protection of marine water aquatic life. Parameter concentrations above a WQG value, but within the range of values observed in the baseline monitoring program or reference stations are considered to represent the natural condition of the water and not flagged as a possible indicator of project influence. Similarly, WQG exceedances at marine reference stations are considered to represent background conditions that are not influenced by the project. It is expected that samples collected within the IDZ (*i.e.*, mixing zone) defined in PE-111578 for the authorized discharge locations may have parameter concentrations above baseline or background (*i.e.*, reference station) concentrations due to project influence. The analytical results, field parameters and WQGs are summarized in Appendix G.

Analytical results and field measurements were available at the time of reporting for marine water samples collected at 0.5 and 2 m below the water surface and 2 m above the seafloor on June 17

at IDZ-W1, IDZ-W2, and marine reference station WQR2 as well as on June 18 at IDZ-E1 and IDZ-E2 (as discussed in Report #69).

Parameter concentrations met WQGs except field pH, dissolved oxygen, total boron and total copper in some samples (Appendix G; Tables E-1 through Table E-3). Field pH was below the lower range of the WQG (pH 7.0) in the sample collected at 0.5 m below the surface at IDZ-W1 on June 17 (pH 6.54). In samples collected at 2 m above the seafloor at IDZ-W1, IDZ-W2 and marine reference station WQR2 on June 17 and at station IDZ-E1 on June 18, dissolved oxygen ranged from 7.30 to 7.97 mg/L and was below the lower limit of the WQG (8 mg/L). In samples collected at 2 m above the seafloor at IDZ-W1, IDZ-W2 and marine reference station WQR2 and us below the lower limit of the WQG (8 mg/L). In samples collected at 2 m above the seafloor at IDZ-W1, IDZ-W2 and marine reference station WQR2 and at 2 m below the surface at IDZ-W1 on June 17, total boron was above the WQG (1.2 mg/L) and ranged from 2.61 to 3.55 mg/L. Low concentrations of dissolved oxygen and elevated concentrations of total boron are indicative of influence from the deeper saline waters in the northern basin of Howe Sound and are a natural condition of marine water at the WDA monitoring stations. The field pH values and dissolved oxygen and total boron concentrations observed at the IDZ monitoring stations are within concentrations that have been observed in the pre-construction baseline monitoring program or within background ranges observed at marine reference stations and are therefore not attributed to project influence.

Total copper was above the short- and long-term WQGs (0.002 and 0.003 mg/L, respectively) in the sample collected at 2 m below the surface at marine reference station WQR2 (0.00404 m/L) on June 17. The samples collected at marine reference stations represent background marine water quality and are not flagged as potential project-influenced exceedances of the WQGs.

4. Quality Control

This section presents the results of the quality control (QC) evaluation for the PE-111578 weekly report (Table 4). The evaluation includes a review of field and lab QC, completeness of the weekly report (*e.g.*, pending data), completeness of the monitoring program, confirmation of recordkeeping, evaluation of compliance and review of water management activities. Items flagged for follow-up in Section 3 are also tracked in Table 4. Any items flagged for follow-up are carried forward to future reports until they are closed.

QC Procedure	Observation	Investigation/Resolution
Reporting Period (June 22 – 28, Report #70)	
Authorized Works and Monitoring Program Evaluation	The authorized works and monitoring stations have not been established as described in PE-111578.	The PE-111578 authorized works for water management have been constructed, except for some of the conveyance ditches which require completion of site grading prior to installation. Sumps, pumps and hoses are used for temporary conveyance until the ditches are completed. The lower reach of East Creek has been temporarily diverted through OUT-11 outfall since September 17, 2024, to facilitate replacement of the East Creek outfall culvert (OUT-12). All monitoring stations have been established except at SP-E-IN-1, SP-E-IN-2, SP-W-IN-1 and SP-W-IN-2 where substitute stations are established in lieu of those listed in PE-111578 (refer to Section 2). This item remains open.
Pending Data	Analytical results not reported.	Analytical results for contact water samples collected June 26 were not included with Report #70. Methylmercury, dioxins and furans results for treated water samples collected June 23 were not included with Report #70. The pending results will be included in future weekly reports when available. This item remains open.
Data Quality	Lab reanalysis	Total copper was above the short- and long-term WQGs (0.002 and 0.003 mg/L, respectively) in the sample collected at 2 m below the surface at marine reference station WQR2 (0.00404 m/L) on June 17. Lab reanalysis is underway to confirm the reported result. This item remains open.
Ongoing Items fro	m Previous Weekly Reports	
Report #57: Pending Data	Analytical results not reported.	Chronic toxicity results for marine receiving environment samples collected March 25 were not included with Report #70. The pending results will be included in future weekly reports when available. This item remains open.
Report #62: WWTP Performance Evaluation	Total copper above the MDO.	This item was first noted in Report #46 (January 8 sample). From January 8 onwards the WWTP-E-OUT total copper concentrations were 0.00809, 0.00595, 0.00895, 0.00518, 0.00542, 0.00525, 0.00450, 0.00734, 0.00464, 0.00462, and 0.00573 mg/L in samples collected at WWTP-E-OUT on January 8, 14, 24, 28, February 24, March 8, 17, April 24, May 10, June 3, and June 9, respectively, and ranged from 0.00613 to 0.0108 mg/L in four replicate samples collected on February 15. The HSMT metal removal media was replaced on June 5 and the fresh media was expected to improve copper removal; however, the total copper result for WWTP-E-OUT collected June 9 (0.00573 mg/L) following the media replacement was above the MDO. Follow-up samples collected June 19 and 23 returned total copper concentrations of 0.00264 and 0.00263 mg/L, respectively. The treatment performance for total copper continues to be reviewed. This item remains open.
Report #65:	Analytical results not reported.	Dioxins and furans results for contact water and treated water samples collected May 19 are discussed in Section 3.4 of
Pending Data Report #66: Pending Data	Analytical results not reported.	Report #70. This item is closed. Dioxins and furans results for contact water and treated water samples collected May 30 are discussed in Section 3.3 of Report #70. Chronic toxicity results for receiving environment samples collected May 27 were not included with Report #70. The pending results will be included in future weekly reports when available. This item remains open.
Report #67: WQG Evaluation	Total mercury and methylmercury above WQG.	<u>Report #62</u> : methylmercury and total mercury measured at station SP-E-OUT on April 24 (0.000264 and 0.00851 µg/L, respectively) were 2.6 times greater than the calculated WQG. <u>Report #65</u> : methylmercury (0.000149 and 0.000158 µg/L) and total mercury (0.00821 and 0.00825 µg/L) measured in two replicate samples at station SP-W-OUT on May 19 were 1.5 to 1.6 times greater than the WQGs. <u>Report #66</u> : methylmercury results for marine receiving environment samples collected at 2 m below surface and at 2 m above the seafloor at IDZ-W1 on May 7 were retested by the laboratory and the original results (0.000101 and 0.000092 ug/L, respectively) were determined to be incorrect. Revised results are <0.000020 and 0.000030 ug/L, respectively, below the WQG (0.0001 µg/L). <u>Report #67</u> : Methylmercury and total mercury measured at non-contact water diversion ditch station OUT-02 on May 19 (0.000213 and 0.00319 µg/L, respectively) were above the WQGs and similar to or below maximum values (0.000156 and <0.010 µg/L, respectively) for diversion ditch samples, suggesting there may be background influence. The sample has been retested and the methylmercury concentration was confirmed. A review of site activities at the time of sampling indicates it is unlikely there was project influence along the ditch line.
		In general, there has been an increased incidence of total mercury and methylmercury exceedances in site contact waters since late April. During this time the site conditions have been generally drier than through the winter months. Possible project related sources have been evaluated, and a point source of mercury has not been identified. There have been instances of the lab reporting falsely elevated receiving environment results (Report #66, May 7 marine water samples, see above entry), further review of the test method with the lab has been completed and no changes have been made in the test method; however, a further investigation into erroneous lab results concluded that sample contamination occurred during the preparation stage and corrective actions have been implemented. Baseline monitoring of diversion ditch water suggests there may be non-project influences on the concentration of mercury in diversion ditch waters. This item remains open.
Report #67: Pending Data	Analytical results not reported.	Methylmercury results for non-contact diversion ditch samples collected June 1 and 2 and for receiving environment samples collected June 6 are discussed in Sections 3.5 and 3.6, respectively, of Report #70. Dioxins and furans results for contact water and treated water samples collected June 1 and for receiving environment samples collected June 6 are discussed in Sections 3.4 and 3.6, respectively, of Report #70. Dioxins and furans results for contact water samples collected June 3 were not included with Report #70. The pending results will be included in future weekly reports when available. This item remains open.
Report #68: Pending Data	Analytical results not reported.	Dioxins and furans results for contact water and treated water samples collected June 9 and 12 were not included with Report #70. The pending results will be included in future weekly reports when available. This item remains open.
Report #69: Pending Data	Analytical results not reported.	Analytical results and field parameters for receiving environment samples collected June 17 and 18 are discussed in Sections 3.6 and 3.7 of Report #70. Methylmercury results for contact water and treated water samples collected June 16 and 19 are discussed in Sections 3.3 and 3.4 of Report #70. Methylmercury, dioxin and furans results for receiving environment samples collected June 17 and 18 were not included with Report #70. Dioxins and furans results for contact water and treated water samples collected June 17 and 18 were not included with Report #70. Acute toxicity results for clarified effluent from the E500GPM and W500GPM TSS settling systems were not included with Report #70. Toxicity samples were collected from the E500GPM and W500GPM stations as proxies for the SP-E-OUT and SP-W-OUT stations, respectively, to meet the quarterly toxicity monitoring requirement for sedimentation pond effluent. The pending results will be included in future weekly reports when available. This item remains open.

Table 4: Weekly Report QC Evaluations and Ongoing Items

Notes:

Result QA/QC screening includes the evaluation of field and lab QC results, comparison of total and dissolved metal results and review for modified detection limits. Pending data are outstanding results from monitoring samples reported in the current or previous weekly reports.

Authorized works and monitoring program evaluation is an assessment of the completeness of the authorized works and monitoring program compared to PE-111578 specified or implied requirements.

WWTP performance evaluation is an assessment of WWTP effluent quality compared to operational MDOs.

Data QC indicates an evaluation of data trends or inter-parameter relationships that suggest a test result may not be representative of water quality at the time of monitoring.

Non-compliant discharge indicates exceedance of a discharge limit or a discharge that bypasses the sedimentation pond discharge location.

Potential project influence is an assessment that water quality at creek and Howe Sound baseline stations are above the baseline concentration range and may indicate project influence at these stations.

5. Closure

This weekly report is a desktop review by Lorax of the PE-111578 discharge and compliance monitoring program records, reports and results provided by Woodfibre LNG and prime contractor McDermott International and their sub-contractors. The records reviewed and analyzed by Lorax include ALS Environmental laboratory test reports and site reports (from Roe Environmental, LB LNG, McDermott and Woodfibre LNG). Verbal or electronic communications between Lorax, and Roe Environmental, LB LNG, McDermott, and Woodfibre LNG staff are conducted as needed to confirm the information presented in this report.

Regards,

LORAX ENVIRONMENTAL SERVICES LTD.

Holly Pelletier, B.Sc., GIT. Environmental Geoscientist

Patrick Muelle Association of

Patrick Mueller, B.Sc., P.Chem. Environmental Chemist

Appendix A: Figures and Site Images

P:\@202506\Woodfibre\Drafting Figures\APRX\WLNG Weekly Report Figure\WLNG Weekly Report.aprx Figure 1 - Monitoring and Compliance Locations

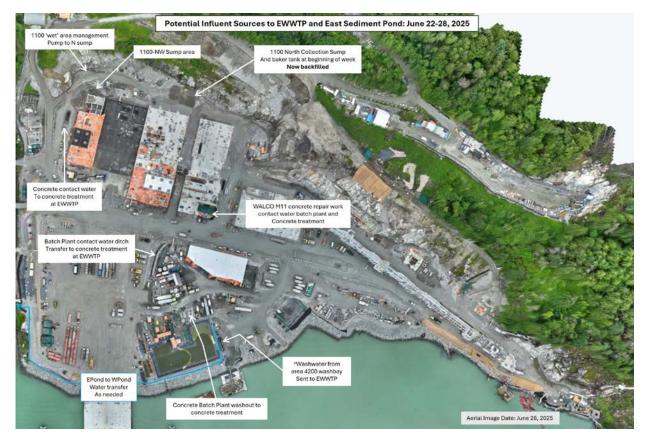


Figure 2: East Catchment contact water management facilities (June 22 – 28).

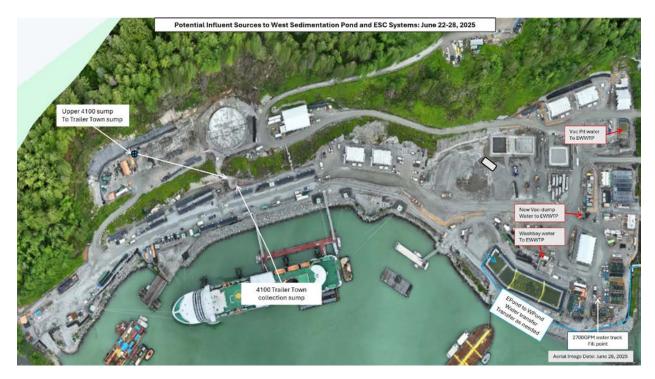


Figure 3: West Catchment contact water management facilities (June 22 – 28).

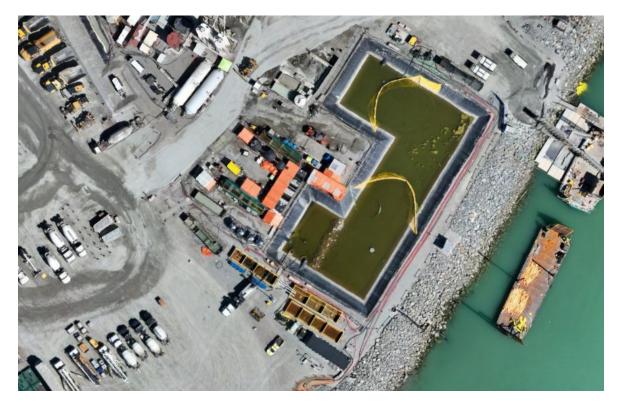


Figure 4: Aerial view of the East Sedimentation Pond (June 28, 2025). The East WWTP is located on the left side and the E500GPM TSS settling system is situated along the bottom edge of the pond. Algal mats are visible in the central cell of the pond.

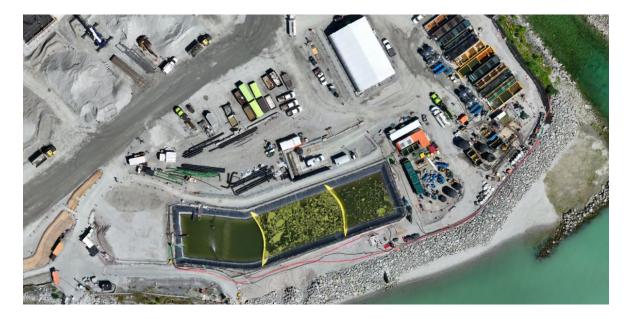


Figure 5: Aerial view of the West Sedimentation Pond (June 28, 2025). The TSS settling systems are located to the left (W500GPM) and right (ESC) of the pond. Algal mats are visible in the centre and final cells of the pond.

Appendix B: East Catchment Monitoring Results

					Station WWTP-E-IN	
Parameter	Unit	Lowest Applicable Guideline ¹		PE-111578 Discharge	Influent WWTP-E-IN	
i urumeter	om			Limit		
					VA25B5143-003	
		Long Term	Short Term		2025-06-23 9:35	
General Parameters						
pH - Field	pH units	- 2	-	5.5 - 9.0	7.0	
Specific Conductivity - Field	µS/cm	-	-	-	1861	
Temperature - Field	°C	-	-	-	18.3	
Salinity - Field	ppt	-	-	-	0.95	
Turbidity - Field	NTU	-	-	-	6.59	
TSS	mg/L	-	-	25 or 75 ⁶	5.8	
Dissolved Oxygen - Field	mg/L	≥8	-	-	9.51	
Anions and Nutrients					712	
Sulphate Chloride	mg/L mg/L	-	-	-	713 22.2	
Fluoride	mg/L mg/L	-	- 1.5	-	0.334	
Ammonia (N-NH ₃)	mg/L mg/L	 14 ³	92 ³		<0.0050	
Nitrite (N-NO ₂)	mg/L mg/L	-	- 92	-	<0.0030	
Nitrate (N-NO ₃)	mg/L mg/L	3.7	339		<0.0100	
Total Metals	ing/L	5.1	557	-	~0.0500	
Aluminum, total (T-Al)	mg/L	-	-	-	0.479	
Antimony, total (T-Sb)	mg/L mg/L	-	0.27 4	-	0.0015	
Arsenic, total (T-As)	mg/L	0.0125	0.0125	_	0.0015	
Barium, total (T-Ba)	mg/L	-	-	-	0.0173	
Beryllium, total (T-Be)	mg/L	0.1	-	-	<0.000040	
Boron, total (T-B)	mg/L	1.2	-	-	0.186	
Cadmium, total (T-Cd)	mg/L	0.00012	-	-	< 0.0000550	
Chromium, total (T-Cr)	mg/L	-	-	-	0.00426	
Cobalt, total (T-Co)	mg/L	-	-	-	< 0.00020	
Copper, total (T-Cu)	mg/L	- 2	- 2	0.0043	0.00311	
Iron, total (T-Fe)	mg/L	-	-	-	0.311	
Lead, total (T-Pb)	mg/L	- 2	_ 2	0.0035	0.000475	
Manganese, total (T-Mn)	mg/L	-	-	-	0.017	
Mercury, total (T-Hg)	mg/L	0.000016 5	-	-	<u>0.0000761</u>	
Molybdenum, total (T-Mo)	mg/L	-	-	-	0.163	
Nickel, total (T-Ni)	mg/L	0.0083	-	-	<0.00100	
Selenium, total (T-Se)	mg/L	0.002	-	-	0.000931	
Silver, total (T-Ag)	mg/L	0.0005	0.0037	-	<0.000020	
Thallium, total (T-Tl) Uranium, total (T-U)	mg/L	-	-	-	0.000048	
Vanadium, total (T-V)	mg/L	- 2	-	-	0.0277	
Zinc, total (T-Zn)	mg/L	_ 2	2	0.0081 0.0133	0.00558	
Hexavalent Chromium, total	mg/L mg/L	0.0015		0.0155	0.00063	
Dissolved Metals	mg/L	0.0015	-	-	0.00003	
Cadmium, dissolved (D-Cd)	mg/L	-	-	_	< 0.0000450	
Copper, dissolved (D-Cu)	mg/L mg/L	_	_		0.00207	
Iron, dissolved (D-Fe)	mg/L			_	0.042	
Lead, dissolved (D-Pb)	mg/L	_	_		<0.00050	
Manganese, dissolved (D-Mn)	mg/L	-	-	-	0.0124	
Nickel, dissolved (D-Ni)	mg/L	-	-	-	0.00383	
Strontium, dissolved (D-Sr)	mg/L	-	-	-	0.319	
Vanadium, dissolved (D-V)	mg/L	-	-	-	0.00505	
Zinc, dissolved (D-Zn)	mg/L	-	-	-	0.0141	
Polycyclic Aromatic Hydrocar	bons (PAHs)					
Acenaphthene	mg/L	0.006	-	-	< 0.000010	
Acridine	mg/L	-	-	-	< 0.000010	
Anthracene	mg/L	-	-	-	< 0.000010	
Benz(a)anthracene	mg/L	-	-	-	<0.000010	
Benzo(a)pyrene	mg/L	0.00001	-	-	<0.0000050	
Chrysene	mg/L	0.0001	-	-	<0.000010	
Fluoranthene	mg/L	-	-	-	<0.000010	
Fluorene	mg/L	0.012	-	-	<0.000010	
1-methylnaphthalene	mg/L	0.001	-	-	<0.000010	
2-methylnaphthalene	mg/L	0.001	-	-	<0.000010	
Naphthalene Phenanthrene	mg/L	0.001	-		<0.000050 <0.000020	
Pyrene	mg/L mg/L	-	-	-	<0.000020	
Quinoline	mg/L mg/L	-	-		<0.000010	
Volatile Organic Compounds (-		_	~0.000030	
Benzene	mg/L	0.11	_	_	< 0.00050	
Ethylbenzene	mg/L mg/L	0.25			<0.00050	
Methyl-tert-butyl-ether	mg/L mg/L	5	0.44	_	<0.00050	

 Table B-1:
 East Catchment Contact Water Influent Analytical Results Received at the Time of Reporting.

Ethylbenzene	mg/L	0.25	-	-	< 0.00050
Methyl-tert-butyl-ether	mg/L	5	0.44	-	< 0.00050
Styrene	mg/L	-	-	-	< 0.00050
Toluene	mg/L	0.215	-	-	< 0.00040
Total Xylenes	mg/L	-	-	-	< 0.00050
Chlorobenzene	mg/L	0.025	-	-	< 0.00050
1,2-Dichlorobenzene	mg/L	0.042	-	-	< 0.00050

Notes:

Results *underlined in bold italics* exceed the applicable long-term water quality guideline for the protection of marine water aquatic life.

Shaded results exceed the applicable short-term water quality guideline for the protection of marine water aquatic life.

Results in orange text exceed the PE-111578 East Sedimentation Pond Discharge Limit.

The East Catchment did not discharge during the monitoring period (June 22 - 28).

¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs. ² The WQG was not evaluated for parameters with discharge limits.

² The WQG was not evaluated for parameters with discharge mints. ³ The BC WQG for total ammonia is salinity, pH and temperature dependent; see Tables 27E and 27F in BC WQG guidance document. ⁴ The working BC WQG for trivalent antimony [SB(III)] is 0.27 mg/L and is applied to total antimony results. ⁵ When MeHg $\leq 0.5\%$ of total Hg, the BC WQG = 0.00002 mg/L. The Canadian WQG = 0.000016 mg/L. ⁶ The PE-111578 discharge limit for TSS is 25 mg/L under dry conditions and 75 mg/L for each day of Wet Conditions.

					Station WWTP-E-OUT	
		Lowest Aj		PE-111578	Effluent	
Parameter	Unit Guideline ¹		Discharge Limit	WWTP-E-OUT VA25B5143-004		
		Long Term	Short Term	-	2025-06-23 14:55	
General Parameters		11		1		
pH - Field	pH units	- 2	-	5.5 - 9.0	7.5	
Specific Conductivity - Field	µS/cm	-	-	-	1370	
Temperature - Field	°C	-	-	-	20.3	
Salinity - Field	ppt	-	-	-	0.69	
Turbidity - Field	NTU	-	-	-	5.73	
TSS Dissolved Oxygen - Field	mg/L mg/I	_ ≥8	-	25 or 75 ⁶	3.6	
Anions and Nutrients	mg/L	≥0	-	-	0.41	
Sulphate	mg/L	_	_	_	761	
Chloride	mg/L	_	_	_	21.1	
Fluoride	mg/L	-	1.5	-	0.276	
Ammonia (N-NH3)	mg/L	3.7 ³	25 ³	-	0.0143	
Nitrite (N-NO ₂)	mg/L	-	-	-	< 0.0100	
Nitrate (N-NO ₃)	mg/L	3.7	339	-	< 0.0500	
Total Metals		1				
Aluminum, total (T-Al)	mg/L	-	-	-	0.248	
Antimony, total (T-Sb)	mg/L	-	0.27 4	-	0.00149	
Arsenic, total (T-As)	mg/L	0.0125	0.0125	-	0.00259	
Barium, total (T-Ba) Beryllium, total (T-Be)	mg/L mg/I	- 0.1	-	-	0.00576	
Boron, total (T-B)	mg/L mg/L	1.2	-	-	0.178	
Cadmium, total (T-Cd)	mg/L mg/L	0.00012	-	_	<0.0000450	
Chromium, total (T-Cr)	mg/L	-	_	_	0.00266	
Cobalt, total (T-Co)	mg/L	_	-	-	<0.00020	
Copper, total (T-Cu)	mg/L	- 2	_ 2	0.0043	0.00263	
Iron, total (T-Fe)	mg/L	-	-	-	0.101	
Lead, total (T-Pb)	mg/L	- 2	_ 2	0.0035	0.000173	
Manganese, total (T-Mn)	mg/L	-	-	-	0.007	
Mercury, total (T-Hg)	mg/L	0.000016 5	-	-	<u>0.0000576</u>	
Molybdenum, total (T-Mo)	mg/L	-	-	-	0.183	
Nickel, total (T-Ni)	mg/L	0.0083	-	-	<0.00100	
Selenium, total (T-Se)	mg/L	0.002	-	-	0.00097	
Silver, total (T-Ag) Thallium, total (T-Tl)	mg/L mg/L	0.0005	0.0037	-	<0.000020 0.000041	
Uranium, total (T-U)	mg/L mg/L	-	-	-	0.000041	
Vanadium, total (T-V)	mg/L	_ 2		0.0081	0.0125	
Zinc, total (T-Zn)	mg/L	_ 2	_ 2	0.0133	< 0.0060	
Hexavalent Chromium, total	mg/L	0.0015	-	-	0.00060	
Dissolved Metals						
Cadmium, dissolved (D-Cd)	mg/L	-	-	-	< 0.0000450	
Copper, dissolved (D-Cu)	mg/L	-	-	-	0.00281	
Iron, dissolved (D-Fe)	mg/L	-	-	-	< 0.020	
Lead, dissolved (D-Pb)	mg/L	-	-	-	<0.000100	
Manganese, dissolved (D-Mn)	mg/L	-	-	-	0.00601	
Nickel, dissolved (D-Ni)	mg/L mg/I	-	-	-	<0.00100	
Strontium, dissolved (D-Sr) Vanadium, dissolved (D-V)	mg/L mg/L	-	-	-	0.188	
Zinc, dissolved (D-Zn)	mg/L mg/L	_	-	-	0.00603	
Polycyclic Aromatic Hydrocar		<u> </u>			0.0004	
Acenaphthene	mg/L	0.006	_	-	<0.000010	
Acridine	mg/L	-	-	-	<0.000010	
Anthracene	mg/L	-	-	-	<0.000010	
Benz(a)anthracene	mg/L	-	-	-	< 0.000010	
Benzo(a)pyrene	mg/L	0.00001	-	-	< 0.0000050	
Chrysene	mg/L	0.0001	-	-	< 0.000010	
Fluoranthene	mg/L	-	-	-	< 0.000010	
Fluorene	mg/L	0.012	-	-	<0.000010	
1-methylnaphthalene	mg/L	0.001	-	-	<0.000010	
2-methylnaphthalene	mg/L	0.001	-	-	<0.000010	
Naphthalene Phananthrana	mg/L mg/I	0.001	-	-	<0.000050	
Phenanthrene Pvrene	mg/L mg/I	-	-	-	<0.000020 <0.000010	
Ouipoline	mg/L mg/I	-	-	-	<0.000010	

Table B-2:	East Catchment Effluent Analytical Results Received at the Time of Reporting.	

mg/L	0.11	-	-	< 0.00050
mg/L	0.25	-	-	< 0.00050
mg/L	5	0.44	-	< 0.00050
mg/L	-	-	-	< 0.00050
mg/L	0.215	-	-	< 0.00040
mg/L	-	-	-	< 0.00050
mg/L	0.025	-	-	< 0.00050
mg/L	0.042	-	-	< 0.00050
	mg/L mg/L mg/L mg/L mg/L mg/L	mg/L 0.25 mg/L 5 mg/L - mg/L 0.215 mg/L - mg/L - mg/L 0.215 mg/L 0.025	mg/L 0.25 - mg/L 5 0.44 mg/L - - mg/L 0.215 - mg/L - - mg/L 0.215 - mg/L - - mg/L - - mg/L - - mg/L - -	mg/L 0.25 - - mg/L 5 0.44 - mg/L - - - mg/L 0.215 - - mg/L 0.215 - - mg/L 0.215 - - mg/L - - - mg/L - - - mg/L 0.025 - -

Notes:

Quinoline

Volatile Organic Compounds (VOCs)

Results <u>underlined in bold italics</u> exceed the applicable long-term water quality guideline for the protection of marine water aquatic life. Shaded results exceed the applicable short-term water quality guideline for the protection of marine water aquatic life. Results in orange text exceed the PE-111578 East Sedimentation Pond Discharge Limit.

 $<\!\!0.000050$

mg/L

Results in orange text exceed the PE-111578 East Sedimentation Pond Discharge Limit. The East Catchment did not discharge during the monitoring period (June 22 – 28). ¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs. ² The WQG was not evaluated for parameters with discharge limits. ³ The BC WQG for total ammonia is salinity, pH and temperature dependent; see Tables 27E and 27F in BC WQG guidance document. ⁴ The working BC WQG for trivalent antimony [SB(III)] is 0.27 mg/L and is applied to total antimony results. ⁵ When MeHg ≤0.5% of total Hg, the BC WQG = 0.00002 mg/L. The Canadian WQG = 0.000016 mg/L. ⁶ The PE-111578 discharge limit for TSS is 25 mg/L under dry conditions and 75 mg/L for each day of Wet Conditions.

Parameter					Total Methylmercury	Total Mercury
Unit		μg/L	μg/L			
Lowest Applicable G	uideline ¹				0.0001 ²	0.0011 - 0.0027 3,4
Station	Water Type	Sample ID	Lab ID	Sampling Date		
Influent						
SP-E-IN	Influent	SP-E-IN	VA25B4818-001	2025-06-19	<u>0.00220</u>	<u>0.0601</u>
Effluent						
E500GPM-OUT	Effluent	E500GPM-OUT	VA25B366-001	2025-06-16	<u>0.00209</u> 5	<u>0.0227</u> ⁵
E500GPM-OUT	Effluent	E500GPM-OUT	VA25B4818-002	2025-06-19	<u>0.00224</u> 5	<u>0.0412</u> 5
E500GPM-OUT	Effluent	E500GPM-OUT-Dup	VA25B4818-004	2025-06-19	<u>0.00214</u> 5	<u>0.0396</u> 5
Notes:		·			•	·

East Catchment Methylmercury and Corresponding Total Mercury Results Received at the Time of Reporting. Table B-3:

Results underlined in bold italics exceed the applicable long-term water quality guideline for the protection of marine aquatic life.

¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs.

² From BC Ambient Water Quality Guidelines for Mercury Overview Report. The methylmercury concentration threshold of 0.0001 μ g/L (0.1 ng/L) is indicated as a WQG for the protection of wildlife and is set at a concentration that protects fish from mercury bioaccumulation to a level that may harm wildlife that consume fish.

³ CCME guideline for total mercury = $0.016 \,\mu$ g/L.

⁴ When MeHg $\leq 0.5\%$ of total Hg, BC WQG = 0.02 µg/L. When MeHg > 0.5% of total Hg, BC WQG = 0.0001/(MeHg/Total Hg). Detection limit values are used to calculate the WQG for result reported as not detected.

⁵ E500GPM clarified effluent is directed to the East Sedimentation Pond and there was no discharge from the pond to Howe Sound on June 16 nor on June 19.

Non-detect results are screened using the detection limit value.

Table B-4: East Catchment Dioxin and Furan Toxicity Equivalency Quantity (TEQ) Results Received at the Time of **Reporting.**

Parameter									
Unit	Unit								
Station	Water Type	Sample ID	Lab ID	Sampling Date					
Influent									
WWTP-E-IN	Influent	WWTP-E-IN	VA25B2820-001	2025-05-30	0.00384	1.31			
Effluent									
WWTP-E-OUT	Effluent	WWTP-E-OUT	VA25B2820-002	2025-05-30	0.279	0.660			
Notes:									

PCDD = polychlorinated dibenzodioxins (dioxins)

PCDF = polychlorinated dibenzofurans (furans)

TEQ = toxic equivalency

Lower bound PCDD/F TEQ is the sum of the toxic equivalency results for the individual PCDD/F parameters. Non-detectable parameters are assigned a value of zero (0).

Upper bound PCDD/F TEQ is the sum of the toxic equivalency results for the individual PCDD/F parameters. Non-detectable parameters are assigned the value of the detection limit.

Table B-5: East Catchment Field Measurements Collected During the Monitoring Period (June 22 – 28).

Parameter	Parameter			Dissolved Oxygen (DO)	Salinity	Turbidity	Estimated TSS ³	рН	Specific Conductivity	Visibility of Sheen
Unit		°C	mg/L	ppt	NTU	mg/L	s.u.	μS/cm		
PE-111578 Dischar	rge Limit		-	•	-	-	25 or 75 ⁶	5.5 - 9.0	-	-
	Lowest Applicable Guideline ¹		-	≥8	-	-	_ 2	_ 2	-	-
Station ID	Water Type	Date								
Influent ⁴										
SP-E-IN	Influent	2025-06-22 14:59	18.8	9.91	0.94	8.47	9.3	7.2	1835	No
SP-E-IN	Influent	2025-06-23 10:29	18.5	9.18	0.99	11.5	11.6	7.2	1945	No
SP-E-IN	Influent	2025-06-24 14:56	21.7	9.08	1.04	6.9	8.1	6.6	2038	No
SP-E-IN	Influent	2025-06-25 11:31	20.8	8.93	1.03	3.07	5.3	6.6	2011	No
SP-E-IN	Influent	2025-06-26 13:18	20.3	9.14	0.91	3.5	5.6	6.9	1797	No
SP-E-IN	Influent	2025-06-27 12:48	19.3	9.02	1.02	2.94	5.2	6.8	1999	No
SP-E-IN	Influent	2025-06-28 10:47	19.2	8.79	1.21	2.77	5.1	6.8	2341	No
WWTP-E-IN	Influent	2025-06-22 14:52	19.2	10.51	1.01	6.47	7.8	7.3	1973	No
WWTP-E-IN	Influent	2025-06-23 9:35	18.3	9.51	0.95	6.59	7.9	7.0	1861	No
WWTP-E-IN	Influent	2025-06-24 14:51	22.4	9.53	1.03	3.08	5.3	6.7	2010	No
WWTP-E-IN	Influent	2025-06-25 11:27	20.6	9.04	1.02	3.44	5.6	6.7	1993	No
WWTP-E-IN	Influent	2025-06-26 13:09	21.8	<u>2.98</u>	1.03	2.41	4.8	6.7	2015	No
WWTP-E-IN	Influent	2025-06-27 12:38	19.4	9.02	1.02	2.49	4.9	6.9	2002	No
WWTP-E-IN	Influent	2025-06-28 10:39	18.6	9.14	1.18	2.94	5.2	6.8	2287	No
Effluent ⁵										
WWTP-E-OUT	Effluent	2025-06-22 15:11	18.6	<u>5.79</u> ⁷	1.01	4.41	6.3	7.3	1975	No
WWTP-E-OUT	Effluent	2025-06-23 10:24	18.8	7.46 ⁷	1.05	2.00	4.5	6.9	2057	No
WWTP-E-OUT	Effluent	2025-06-23 14:55	20.3	8.41	0.69	5.73	7.3	7.5	1370	No
WWTP-E-OUT	Effluent	2025-06-24 14:53	21.2	<u>7.73</u> ⁷	1.09	1.30	4.0	6.2	2123	No
WWTP-E-OUT	Effluent	2025-06-25 11:24	20.4	<u>7.83</u> ⁷	1.03	2.99	5.2	6.3	2020	No
WWTP-E-OUT	Effluent	2025-06-27 12:55	19.0	<u>6.74</u> ⁷	1.03	2.23	4.7	6.3	2015	No
WWTP-E-OUT	Effluent	2025-06-28 10:41	18.4	<u>6.38</u> 7	1.21	1.01	3.8	6.2	2352	No

Notes:

Results underlined in bold italics exceed the applicable long-term water quality guideline for the protection of marine water aquatic life.

Shaded results exceed the applicable short-term water quality guideline for the protection of marine water aquatic life.

Results in orange text exceed the PE-111578 East Sedimentation Pond Discharge Limit.

¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs.

² The WQG was not evaluated for parameters with discharge limits.

 3 TSS concentration is estimated from field turbidity measurements using a site-specific relationship TSS = 0.7458 * [turbidity as NTU] + 3.

⁴ Daily field measurements for station SP-E-IN were collected from cell 1 of the East Sedimentation Pond.

⁵ There was no discharge at the authorized discharge location (SP-E-OUT) during the monitoring period (June 22 – 28), therefore daily field measurements for SP-E-OUT were not collected on those days. The East WWTP was not operational at the time of monitoring on June 26, therefore daily field measurements for WWTP-E-OUT were not collected on June 26.

⁶ The PE-111578 discharge limit for TSS is 25 mg/L under dry conditions and 75 mg/L for each day of Wet Conditions.

⁷ East WWTP treated effluent is directed to the East Sedimentation Pond and there was no discharge from the pond to Howe Sound during the monitoring period (June 22 – 28).

	East Sedimentation Pond Effluent	Transfer to West Sedimentation Pond	East TSS Settling System (E500GPM) Clarified Effluent (Station E500GPM-OUT) ²	East WWTP Treated Effluent (Station WWTP-E-OUT) ³	Discharge to Howe Sound (Station SP-E-OUT)
Unit	m ³	m ³	m ³	m ³	m ³
PE-111578 Discharge Limit	-	-	-	1100	_ 1
Date					
2025-06-22	0	0	0	327	0
2025-06-23	0	0	0	604	0
2025-06-24	0	0	0	654	0
2025-06-25	0	0	0	567	0
2025-06-26	0	0	0	224	0
2025-06-27	0	0	0	542	0
2025-06-28	0	0	0	664	0

 Table B-6:
 East Catchment Daily Discharge Volumes for the Monitoring Period (June 22 – 28).

Notes:

Results in orange text exceed the PE-111578 East Sedimentation Pond Discharge Limit.

¹ As noted in PE-111578 Condition 2.1.4, the annual average authorized discharge rate from the East Sedimentation Pond to Howe Sound was set to 650 m³/day for the purpose of calculating discharge fees as required by the Permit and Approval Fees and Charges Regulation. Therefore, the annual average authorized discharge rate is not evaluated as a discharge limit.

 2 The E500GPM TSS settling system was decommissioned during the monitoring period (June 22 – 28).

³ East WWTP treated effluent was recirculated to the East Sedimentation Pond.

Appendix C: West Catchment Monitoring Results

Parameter	Unit		Applicable eline ¹	PE-111578 Discharge	Station 2700GPM-IN Influent 2700GPM-IN	
				Limit	VA25B5146-001	
		T	CI			
		Long Term	Short Term		2025-06-23 13:30	
General Parameters	TT 1.	_ 2	1		7 0	
pH - Field	pH units	2	-	5.5 - 9.0	7.9	
Specific Conductivity - Field	µS/cm	-	-	-	1378	
Temperature - Field	°C	-	-	-	20.8	
Salinity - Field	ppt	-	-	-	0.69	
Turbidity - Field	NTU	-	-	-	8.65	
TSS	mg/L	-	-	25 or 75 ⁶	13.2	
Dissolved Oxygen - Field	mg/L	≥8	-	-	9.33	
Anions and Nutrients						
Sulphate	mg/L	-	-	-	478	
Chloride	mg/L	_	-	_	18.9	
Fluoride	mg/L	_	1.5	_	0.247	
Ammonia (N-NH ₃)	mg/L	1.5 ³	10 3	_	< 0.0050	
Nitrite (N-NO ₂)	mg/L mg/L	1.5			<0.0050	
Nitrate (N-NO ₃)	mg/L mg/L	3.7	339	-	<0.0030	
	mg/L	5.1	337	-	<0.0230	
Total Metals			1		0.075	
Aluminum, total (T-Al)	mg/L	-	-	-	0.367	
Antimony, total (T-Sb)	mg/L	-	0.27 4	-	0.00106	
Arsenic, total (T-As)	mg/L	0.0125	0.0125	-	0.00305	
Barium, total (T-Ba)	mg/L	-	-	-	0.0111	
Beryllium, total (T-Be)	mg/L	0.1	-	-	< 0.000020	
Boron, total (T-B)	mg/L	1.2	-	-	0.057	
Cadmium, total (T-Cd)	mg/L	0.00012	-	-	< 0.0000300	
Chromium, total (T-Cr)	mg/L	-	-	-	0.00094	
Cobalt, total (T-Co)	mg/L	-	-	-	0.00013	
Copper, total (T-Cu)	mg/L	_ 2	_ 2	0.0043	0.00199	
Iron, total (T-Fe)	mg/L	_	-	-	0.300	
Lead, total (T-Pb)	mg/L	_ 2	_ 2	0.0035	0.00108	
Manganese, total (T-Mn)	mg/L mg/L			-	0.0326	
Mercury, total (T-Hg)	mg/L mg/L	0.000016 5			0.0000158	
	-		-	-		
Molybdenum, total (T-Mo)	mg/L	-	-	-	0.0931	
Nickel, total (T-Ni)	mg/L	0.0083	-	-	0.0014	
Selenium, total (T-Se)	mg/L	0.002	-	-	0.000509	
Silver, total (T-Ag)	mg/L	0.0005	0.0037	-	< 0.000010	
Thallium, total (T-Tl)	mg/L	-	-	-	0.000043	
Uranium, total (T-U)	mg/L		-	-	0.0105	
Vanadium, total (T-V)	mg/L	- 2	-	0.0081	0.00368	
Zinc, total (T-Zn)	mg/L	_ 2	- 2	0.0133	0.0038	
Hexavalent Chromium, total	mg/L	0.0015	-	-	< 0.00050	
Dissolved Metals			1			
Cadmium, dissolved (D-Cd)	mg/L	_	-	-	< 0.0000250	
Copper, dissolved (D-Cu)	mg/L mg/L	_			0.00121	
Iron, dissolved (D-Fe)	mg/L mg/L	-	-	-	0.00121	
Lead, dissolved (D-Pb)	-	-	-			
· · · ·	mg/L			-	0.000192	
Manganese, dissolved (D-Mn)	mg/L	-	-	-	0.0122	
Nickel, dissolved (D-Ni)	mg/L	-	-	-	0.00139	
Strontium, dissolved (D-Sr)	mg/L	-	-	-	0.178	
Vanadium, dissolved (D-V)	mg/L	-	-	-	0.00275	
Zinc, dissolved (D-Zn)	mg/L	-	-	-	0.0014	
Polycyclic Aromatic Hydrocar	bons (PAHs))				
Acenaphthene	mg/L	0.006	-	-	< 0.000010	
Acridine	mg/L	-	-	-	< 0.000010	
Anthracene	mg/L	-	-	-	< 0.000010	
Benz(a)anthracene	mg/L	_	-	_	<0.000010	
Benzo(a)pyrene	mg/L	0.00001	-	-	<0.000010	
Chrysene	mg/L mg/L	0.0001	_	-	<0.000010	
Fluoranthene	mg/L mg/L	0.0001	-		<0.000010	
		-	-	-		
Fluorene	mg/L	0.012	-	-	<0.000010	
1-methylnaphthalene	mg/L	0.001	-	-	<0.000010	
2-methylnaphthalene	mg/L	0.001	-	-	<0.000010	
Nanhthalene	mg/I	0.001	-		<0.000050	

Table C-1: West Catchment Contact Water Influent Analytical Results Received at the Time of Reporting.

Pyrene	mg/L	-	-	-	< 0.000010
Quinoline	mg/L	-	-	-	< 0.000050
Volatile Organic Compounds (V	/OCs)				
Benzene	mg/L	0.11	-	-	< 0.00050
Ethylbenzene	mg/L	0.25	-	-	< 0.00050
Methyl-tert-butyl-ether	mg/L	5	0.44	-	< 0.00050
Styrene	mg/L	-	-	-	< 0.00050
Toluene	mg/L	0.215	-	-	< 0.00040
Total Xylenes	mg/L	-	-	-	< 0.00050
Chlorobenzene	mg/L	0.025	-	-	< 0.00050
1,2-Dichlorobenzene	mg/L	0.042	-	-	< 0.00050

0.001

-

-

-

-

-

< 0.000050

< 0.000020

Notes:

Naphthalene

Phenanthrene

Results underlined in bold italics exceed the applicable long-term water quality guideline for the protection of marine water aquatic life.

Shaded results exceed the applicable short-term water quality guideline for the protection of marine water aquatic life.

Results in orange text exceed the PE-111578 West Sedimentation Pond Discharge Limit. The West Catchment did not discharge during the monitoring period (June 22 – 28).

mg/L

mg/L

¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs.

² The WQG was not evaluated for parameters with discharge limits.

³ The BC WQG for total ammonia is salinity, pH and temperature dependent; see Tables 27E and 27F in BC WQG guidance document.

⁴ The working BC WQG for trivalent antimony [SB(III)] is 0.27 mg/L and is applied to total antimony results. ⁵ When MeHg $\leq 0.5\%$ of total Hg, the BC WQG = 0.00002 mg/L. The Canadian WQG = 0.000016 mg/L. ⁶ The PE-111578 discharge limit for TSS is 25 mg/L under dry conditions and 75 mg/L for each day of Wet Conditions.

_			pplicable	PE-111578	Station 2700GPM-OUT Effluent	
Parameter	Unit	Guid	eline ¹	Discharge	2700GPM-OUT	
				Limit	VA25B5146-002	
		Long Term	Short Term		2025-06-23 13:00	
General Parameters		Long I thin	Short renn		2020 00 20 10100	
pH - Field	pH units	_ 2	_	5.5 - 9.0	7.5	
Specific Conductivity - Field	μS/cm			-	1370	
Temperature - Field	^μ 3/cm	-	-		20.3	
	-	-	-	-		
Salinity - Field	ppt	-	-	-	0.69	
Turbidity - Field	NTU	-	-	-	5.73	
TSS	mg/L	-	-	25 or 75 ⁶	7.2	
Dissolved Oxygen - Field	mg/L	≥8	-	-	8.41	
Anions and Nutrients	1		1	1		
Sulphate	mg/L	-	-	-	481	
Chloride	mg/L		-	-	17.8	
Fluoride	mg/L	-	1.5	-	0.23	
Ammonia (N-NH ₃)	mg/L	3.7 ³	25 ³	-	0.0386	
Nitrite (N-NO ₂)	mg/L	-	-	_	< 0.0050	
Nitrate (N-NO ₃)	mg/L	3.7	339	-	< 0.0250	
Total Metals						
Aluminum, total (T-Al)	mg/L	_	_	_	0.255	
Antimony, total (T-Sb)	mg/L	_	0.27 4	_	0.00104	
Arsenic, total (T-As)	mg/L	0.0125	0.0125		0.00104	
	-	- 0.0125	0.0123	-	0.00281	
Barium, total (T-Ba)	mg/L		-			
Beryllium, total (T-Be)	mg/L	0.1	-	-	<0.000020	
Boron, total (T-B)	mg/L	1.2	-	-	0.029	
Cadmium, total (T-Cd)	mg/L	0.00012	-	-	<0.0000250	
Chromium, total (T-Cr)	mg/L	-	-	-	0.00095	
Cobalt, total (T-Co)	mg/L	-	-	-	< 0.00010	
Copper, total (T-Cu)	mg/L	- 2	- 2	0.0043	0.00114	
Iron, total (T-Fe)	mg/L	-	-	-	0.173	
Lead, total (T-Pb)	mg/L	- 2	- 2	0.0035	0.000553	
Manganese, total (T-Mn)	mg/L	-	-	-	0.0402	
Mercury, total (T-Hg)	mg/L	0.000016 5	-	-	0.0000136	
Molybdenum, total (T-Mo)	mg/L	-	-	_	0.0901	
Nickel, total (T-Ni)	mg/L	0.0083	-	-	0.00051	
Selenium, total (T-Se)	mg/L	0.002	_	_	0.000389	
Silver, total (T-Ag)	mg/L	0.0002	0.0037	_	<0.000010	
Thallium, total (T-Tl)	mg/L mg/L	-	-		0.000074	
Uranium, total (T-U)	-			-	0.0094	
	mg/L	- 2	-	-		
Vanadium, total (T-V)	mg/L	- ²	2	0.0081	0.00298	
Zinc, total (T-Zn)	mg/L			0.0133	0.0031	
Hexavalent Chromium, total	mg/L	0.0015	-	-	< 0.00050	
Dissolved Metals			1	1		
Cadmium, dissolved (D-Cd)	mg/L	-	-	-	<0.0000200	
Copper, dissolved (D-Cu)	mg/L	-	-	-	0.00074	
Iron, dissolved (D-Fe)	mg/L	-	-	-	0.031	
Lead, dissolved (D-Pb)	mg/L	-	-	-	0.000121	
Manganese, dissolved (D-Mn)	mg/L	-	-	-	0.0242	
Nickel, dissolved (D-Ni)	mg/L	-	-	-	< 0.00050	
Strontium, dissolved (D-Sr)	mg/L	_	_	_	0.177	
Vanadium, dissolved (D-V)	mg/L		-		0.00233	
Zinc, dissolved (D-Zn)	mg/L				<0.00233	
Polycyclic Aromatic Hydrocar					\0.0010	
					~0.000010	
Acenaphthene	mg/L	0.006	-	-	<0.000010	
Acridine	mg/L	-	-	-	<0.000010	
Anthracene	mg/L	-	-	-	<0.000010	
Benz(a)anthracene	mg/L	-	-	-	< 0.000010	
Benzo(a)pyrene	mg/L	0.00001	-	-	< 0.0000050	
Chrysene	mg/L	0.0001	-	-	< 0.000010	
Fluoranthene	mg/L	-	-	-	< 0.000010	
Fluorene	mg/L	0.012	-	-	< 0.000010	
1-methylnaphthalene	mg/L	0.001	-	-	< 0.000010	
2-methylnaphthalene	mg/L	0.001	-	-	< 0.000010	
Naphthalene	mg/L	0.001	_	_	<0.000050	
Phenanthrene	mg/L			_	<0.000020	

Table C-2:West	Catchment Contact Water Eff	luent Analytical Results I	Received at the Time of Reporting.
----------------	-----------------------------	----------------------------	---

Pyrene	mg/L	-	-	-	< 0.000010
Quinoline	mg/L	-	-	-	< 0.000050
Volatile Organic Compounds (V	/OCs)				
Benzene	mg/L	0.11	-	-	< 0.00050
Ethylbenzene	mg/L	0.25	-	-	< 0.00050
Methyl-tert-butyl-ether	mg/L	5	0.44	-	< 0.00050
Styrene	mg/L	-	-	-	< 0.00050
Toluene	mg/L	0.215	-	-	< 0.00040
Total Xylenes	mg/L	-	-	-	< 0.00050
Chlorobenzene	mg/L	0.025	-	-	< 0.00050
1,2-Dichlorobenzene	mg/L	0.042	-	-	< 0.00050

-

-

-

< 0.000020

Notes:

Phenanthrene

Results underlined in bold italics exceed the applicable long-term water quality guideline for the protection of marine water aquatic life.

Shaded results exceed the applicable short-term water quality guideline for the protection of marine water aquatic life.

Results in orange text exceed the PE-111578 West Sedimentation Pond Discharge Limit. The West Catchment did not discharge during the monitoring period (June 22 - 28).

mg/L

¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs. ² The WQG was not evaluated for parameters with discharge limits.

³ The WQG was not evaluated for parameters with discharge mints. ³ The BC WQG for total ammonia is salinity, pH and temperature dependent; see Tables 27E and 27F in BC WQG guidance document. ⁴ The working BC WQG for trivalent antimony [SB(III)] is 0.27 mg/L and is applied to total antimony results. ⁵ When MeHg $\leq 0.5\%$ of total Hg, the BC WQG = 0.00002 mg/L. The Canadian WQG = 0.000016 mg/L. ⁶ The PE-111578 discharge limit for TSS is 25 mg/L under dry conditions and 75 mg/L for each day of Wet Conditions.

Parameter			Total Methylmercury	Total Mercury		
Unit		μg/L	μg/L			
Lowest Applicable Guid	eline ¹	0.0001 ²	0.00069-0.00073 ^{3,4}			
Station	Water Type	Sample ID	Lab ID	Sampling Date		
Influent						
SP-W-IN	Influent	SP-W-IN	VA25B4818-008	2025-06-19	<u>0.00167</u>	<u>0.0121</u>
Effluent						
W500GPM-OUT	Effluent	W500GPM-OUT	VA25B4818-009	2025-06-19	<u>0.000819</u> 5	<u>0.00563</u> 5

Table C-3: West Catchment Methylmercury and Corresponding Total Mercury Results Received at the Time of Reporting.

Notes:

Results underlined in bold italics exceed the applicable long-term water quality guideline for the protection of marine aquatic life.

¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs.

² From BC Ambient Water Quality Guidelines for Mercury Overview Report. The methylmercury concentration threshold of 0.0001 µg/L (0.1 ng/L) is indicated as a WQG for the protection of wildlife and is set at a concentration that protects fish from mercury bioaccumulation to a level that may harm wildlife that consume fish.

³ CCME guideline for total mercury = $0.016 \,\mu g/L$.

⁴ When MeHg $\leq 0.5\%$ of total Hg, BC WQG = 0.02 µg/L. When MeHg > 0.5% of total Hg, BC WQG = 0.0001/(MeHg/Total Hg). Detection limit values are used to calculate the WQG for result reported as not detected. ⁵ W500GPM clarified effluent was directed to the West Sedimentation Pond and there was no discharge from the pond to Howe Sound on June 19.

Non-detect results are screened using the detection limit value.

Table C-4: West Catchment Dioxin and Furan Toxicity Equivalency Quantity (TEQ) Results Received at the Time of **Reporting.**

Parameter			Lower Bound PCDD/F TEQ	Upper Bound PCDD/F TEQ		
Unit					pg/L	pg/L
Station	Water Type	Sample ID	Lab ID	Sampling Date		
Influent						
SP-W-IN	Influent	SP-W-IN	VA25B1592-006	2025-05-19	0.00216	0.715
SP-W-IN	Influent	SP-W-IN	VA25B2860-001	2025-06-01	0.0465	0.713
Effluent						
SP-W-OUT	Effluent	SP-W-OUT	VA25B1592-002	2025-05-19	0.0200	0.715
SP-W-OUT	Effluent	SP-W-OUT-Dup	VA25B1592-003	2025-05-19	0.00269	0.690
SP-W-OUT	Effluent	SP-W-OUT	VA25B2860-002	2025-06-01	0.230	0.676
SP-W-OUT	Effluent	SP-W-OUT-Dup	VA25B2860-004	2025-06-01	0.0133	0.623

Notes:

PCDD = polychlorinated dibenzodioxins (dioxins)

PCDF = polychlorinated dibenzofurans (furans)

TEO = toxic equivalency

Lower bound PCDD/F TEQ is the sum of the toxic equivalency results for the individual PCDD/F parameters. Non-detectable parameters are assigned a value of zero (0).

Upper bound PCDD/F TEQ is the sum of the toxic equivalency results for the individual PCDD/F parameters. Non-detectable parameters are assigned the value of the detection limit.

Parameter			Temperature	Dissolved Oxygen (DO)	Salinity	Turbidity	Estimated TSS ³	pH	Specific Conductivity	Visibility
Unit			°C	mg/L	ppt	NTU	mg/L	s.u.	μS/cm	of Sheen
PE-111578 Discha	arge Limit		-	-	-	-	25 or 75 ⁶	5.5 - 9.0	-	-
Lowest Applicabl	e Guideline ¹			≥8	-	-	_ 2	- 2		-
Station ID	Water Type	Date								
Influent ⁴										
SP-W-IN	Influent	2025-06-22 12:34	19.3	10.28	0.78	14.74	14.0	8.3	1539	No
SP-W-IN	Influent	2025-06-23 10:45	18.8	8.18	0.68	9.09	9.8	7.6	1351	No
SP-W-IN	Influent	2025-06-24 15:16	24.3	9.43	0.24	20.11	18.0	7.5	490	No
SP-W-IN	Influent	2025-06-25 11:43	20.9	8.07	0.69	12.98	12.7	7.8	1375	No
SP-W-IN	Influent	2025-06-26 12:37	20.6	8.80	0.69	7.81	8.8	8.0	1377	No
SP-W-IN	Influent	2025-06-27 12:12	18.9	9.64	0.69	5.07	6.8	8.1	1365	No
SP-W-IN	Influent	2025-06-28 11:32	19.3	9.99	0.74	4.39	6.3	7.9	1460	No
2700GPM-IN	Influent	2025-06-23 13:30	20.8	9.33	0.69	8.65	9.5	7.9	1378	No
2700GPM-IN	Influent	2025-06-25 11:10	20.8	8.07	0.69	7.43	8.5	7.9	1376	No
2700GPM-IN	Influent	2025-06-26 12:58	20.7	9.3	0.69	6.93	8.2	8.1	1377	No
2700GPM-IN	Influent	2025-06-27 12:22	19.5	9.6	0.68	6.14	7.6	8.2	1362	No
2700GPM-IN	Influent	2025-06-28 13:13	20.8	9.83	0.74	4.83	6.6	8.3	1467	No
Effluent ⁵										
2700GPM-OUT	Effluent	2025-06-23 13:00	20.3	8.41	0.69	5.73	7.3	7.5	1370	No
2700GPM-OUT	Effluent	2025-06-25 11:02	20.6	8.03	0.69	5.04	6.8	7.8	1370	No
2700GPM-OUT	Effluent	2025-06-26 12:54	20.5	8.93	0.69	5.04	6.8	8.0	1375	No
2700GPM-OUT	Effluent	2025-06-27 12:26	19.4	9.81	0.68	4.85	6.6	8.1	1360	No
2700GPM-OUT	Effluent	2025-06-28 13:16	20.0	9.24	0.74	4.51	6.4	8.0	1467	No

Table C-5: West Catchment Field Measurements Collected During the Monitoring Period (June 22 – 28).

Notes:

Results *underlined in bold italics* exceed the applicable long-term water quality guideline for the protection of marine water aquatic life.

Shaded results exceed the applicable short-term water quality guideline for the protection of marine water aquatic life.

Results in orange text exceed the PE-111578 West Sedimentation Pond Discharge Limit.

¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs.

² The WQG was not evaluated for parameters with discharge limits.

 3 TSS concentration is estimated from field turbidity measurements using a site-specific relationship TSS = 0.7458 * [turbidity as NTU] + 3.

⁴ Daily field measurements for station SP-W-IN were collected from cell 1 of the West Sedimentation Pond.

⁵ There was no discharge at the authorized discharge location (SP-W-OUT) during the monitoring period (June 22 – 28), therefore daily field measurements for SP-W-OUT were not collected on those days.

⁶ The PE-111578 discharge limit for TSS is 25 mg/L under dry conditions and 75 mg/L for each day of Wet Conditions.

	West Sedimentation Pond Effluent	West TSS Settling System (W500GPM) Clarified Effluent (Station W500GPM- OUT) ³	West TSS Settling System (ESC) Clarified Effluent (Station ESC-W-OUT) ⁴	West TSS Settling System (2700GPM) Clarified Effluent (Station 2700GPM-OUT) ⁵	Water Reclaimed for Construction Purposes (Station 2700GPM-OUT)	West WWTP Treated Effluent ¹ (Station WWTP-W- OUT)	Discharge to Howe Sound (Station SP-W-OUT)
Unit	m ³	m ³	m ³		m ³	m ³	m ³
PE-111578 Discharge Limit	-	-	-		-	120	_ 2
Date							
2025-06-22	0	0	0	334	0	0	0
2025-06-23	0	0	0	1,510	0	0	0
2025-06-24	0	0	0	998	0	0	0
2025-06-25	0	0	0	2,422	0	0	0
2025-06-26	0	0	0	2,042	55	0	0
2025-06-27	0	0	0	2,442	75	0	0
2025-06-28	0	0	0	1,858	0	0	0

Table C-6: West Catchment Daily Discharge Volumes for the Monitoring Period (June 22 – 28).

Notes:

Results in orange text exceed the PE-111578 West Sedimentation Pond Discharge Limit.

Results in orange text exceed the PE-111578 West Sedimentation Pond Discharge Limit. ¹ The West WWTP is not being operated, therefore discharges are not expected from this facility. ² As noted in PE-111578 Condition 2.2.4, the annual average authorized discharge rate from the West Sedimentation Pond to Howe Sound was set to 310 m³/day for the purpose of calculating discharge fees as required by the Permit and Approval Fees and Charges Regulation. Therefore, the annual average authorized discharge rate is not evaluated as a discharge limit. ³ The W500GPM TSS settling system was decommissioned during the monitoring period (June 22 – 28). ⁴ The ESC system was not operational during the monitoring period (June 22 – 28). ⁵ Commissioning and pilot testing of a larger TSS settling system (2700GPM) commenced during the monitoring period (June 22 – 28). Clarified effluent from the 2700GPM TSS settling system is recirculated to the West Sedimentation Pond or reclaimed for construction purposes based on operational considerations.

recirculated to the West Sedimentation Pond or reclaimed for construction purposes based on operational considerations.

Appendix D: Non-Contact Water Diversion Ditch Outlets Results

Table D-1: Non-contact Water Diversion Ditch Outlet Methylmercury and Corresponding Total Mercury Results Received at the Time of Reporting.

Parameter		Total Methylmercury	Total Mercury			
Unit		μg/L	μg/L			
Lowest Applic	able Guideline ¹	0.0001 ²	0.0045-0.0055 3,4			
Station	Water Type	Sample ID	Lab ID	Sampling Date		
OUT-01	Non-Contact Water	OUT-01	VA25B2928-001	2025-06-01	0.000036	0.00161
OUT-02	Non-Contact Water	OUT-02	VA25B2928-002	2025-06-02	0.000032	0.00176

Notes:

Results underlined in bold italics exceed the applicable long-term water quality guideline for the protection of freshwater aquatic life.

¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs.

 2 From BC Ambient Water Quality Guidelines for Mercury Overview Report. The methylmercury concentration threshold of 0.0001 μ g/L (0.1 ng/L) is indicated as a WQG for the protection of wildlife and is set at a concentration that protects fish from mercury bioaccumulation to a level that may harm wildlife that consume fish.

³ CCME guideline for total mercury = $0.026 \mu g/L$.

⁴ When MeHg $\leq 0.5\%$ of total Hg, BC WQG = 0.02 µg/L. When MeHg > 0.5\% of total Hg, BC WQG = 0.0001/(MeHg/Total Hg). Detection limit values are used to calculate the WQG for result reported as not detected.

Non-detect results are screened using the detection limit value.

Appendix E: Freshwater Receiving Environment Results

Parameter	Unit	Lowest Applica	ble Guideline ^{1, 2}	Station SW-02 Mill Creek Lower Reach SW-02	Station SW-07 Upstream Mill Creek SW-07 VA25B4483-001	
			<u></u>	VA25B4483-002		
C. I.D. A.		Long Term	Short Term	2025-06-17 13:30	2025-06-17 12:30	
General Parameters	TT	65.00		67	0.1	
pH - Field	pH units	6.5 - 9.0	-	6.7	8.1	
Specific Conductivity - Field	µS/cm	-	-	10	13	
Temperature - Field	°C	-	-	10.8	12.2	
Salinity - Field	ppt	-	-	0	0	
Turbidity - Field	NTU	-	-	1.67	1.64	
TSS	mg/L	-	-	<3.0	3.9	
Dissolved Oxygen - Field	mg/L	>=8	>=5	11.46	10.81	
Anions and Nutrients						
Sulphate ²	mg/L	128	-	1.1	1.1	
Chloride	mg/L	120	600	0.52	< 0.50	
Fluoride ²	mg/L	-	0.40	< 0.020	< 0.020	
Ammonia (N-NH ₃) ²	mg/L	0.343-10.3	4.61-23.9	< 0.0050	< 0.0050	
Nitrite (N-NO ₂) ²	mg/L	0.020	0.060	< 0.0010	< 0.0010	
Nitrate (N-NO ₃)	mg/L	3.0	32.8	0.0166	0.0206	
Total Metals						
Aluminum, total (T-Al) ²	mg/L	0.020-0.13	-	<u>0.0493</u>	0.0503	
Antimony, total (T-Sb)	mg/L	0.074	-	< 0.00010	< 0.00010	
Arsenic, total (T-As)	mg/L	0.005	-	< 0.00010	< 0.00010	
Barium, total (T-Ba)	mg/L	1	-	0.00154	0.00147	
Beryllium, total (T-Be)	mg/L	0.00013	-	< 0.000020	< 0.000020	
Boron, total (T-B)	mg/L	1.2	29	< 0.010	< 0.010	
Cadmium, total (T-Cd) ²	mg/L	0.000036	0.00011	<0.0000050	< 0.0000050	
Chromium, total (T-Cr) ⁴	mg/L	0.001	-	< 0.00050	< 0.00050	
Cobalt, total (T-Co)	mg/L	0.001	0.11	< 0.00010	< 0.00010	
Copper, total (T-Cu)	mg/L	-	-	< 0.00050	< 0.00050	
Iron, total (T-Fe)	mg/L	0.3	1	< 0.010	< 0.010	
Lead, total (T-Pb)	mg/L	-	-	<0.000050	< 0.000050	

Table

	0.000000	0100011	1010000000	1010000000	
mg/L	0.001	-	< 0.00050	< 0.00050	
Cobalt, total (T-Co) mg/L 0.00		0.11	< 0.00010	< 0.00010	
mg/L	-	-	< 0.00050	< 0.00050	
mg/L	0.3	1	< 0.010	< 0.010	
mg/L	-	-	< 0.000050	< 0.000050	
mg/L	0.77	0.82	0.0004	0.00048	
mg/L	0.00002	-	0.0000006	0.0000005	
mg/L	0.073	46	0.00037	0.000353	
mg/L	0.025	-	< 0.00050	< 0.00050	
mg/L	0.001	-	< 0.000050	< 0.000050	
mg/L	0.00012	-	< 0.000010	< 0.000010	
mg/L	0.0008	-	< 0.000010	< 0.000010	
-	0.0085	0.033	0.000136	0.00013	
-	0.12	-	< 0.00050	< 0.00050	
		-	< 0.0030	< 0.0030	
-	0.001	-	< 0.00050	< 0.00050	
		1			
mg/L	0.000018	0.000038	< 0.0000050	<0.0000050	
-	0.00020-0.00036	0.00020-0.0021	< 0.00020	< 0.00020	
-	-	0.35	< 0.010	< 0.010	
-	0.00092-0.00093	-	< 0.000050	< 0.000050	
		1.97		0.00043	
				< 0.00050	
		_	1	0.00431	
-	_	_	1	< 0.00050	
	0.0012-0.0038	0.0070-0.0071	1	< 0.0010	
		1			
1	0.0058	-	< 0.000010	< 0.000010	
-	0.003	-	< 0.000010	< 0.000010	
<u> </u>	0.000012	-	< 0.000010	< 0.000010	
-		-	1	< 0.000010	
-		-	< 0.0000050	< 0.0000050	
-	-	-	< 0.000010	< 0.000010	
	0.00004	_	< 0.000010	< 0.000010	
		_		<0.000010	
	_	_		< 0.000010	
-	-	_		<0.000010	
	0.001	0.001	1	<0.000050	
		_	<0.000020	<0.000020	
mg/L	0.0003	-	<0.000020 <0.000010	<0.000020 <0.000010	
mg/L mg/L	0.0003 0.00002		<0.000010	< 0.000010	
mg/L mg/L mg/L	0.0003	-			
mg/L mg/L mg/L V OCs)	0.0003 0.00002	-	<0.000010 <0.000050	<0.000010 <0.000050	
mg/L mg/L mg/L /OCs) mg/L	0.0003 0.00002 0.0034	-	<0.000010 <0.000050 <0.00050	<0.000010 <0.000050 <0.00050	
mg/L mg/L /OCs) mg/L mg/L	0.0003 0.00002 0.0034 0.04 0.09	- - -	<0.000010 <0.000050 <0.00050 <0.00050	<0.000010 <0.000050 <0.00050 <0.00050	
mg/L mg/L /OCs) mg/L mg/L mg/L	0.0003 0.00002 0.0034 0.04 0.09 10	- - - - 3.4	<0.000010 <0.000050 <0.00050 <0.00050 <0.00050	<0.000010 <0.000050 <0.00050 <0.00050 <0.00050	
mg/L mg/L mg/L /OCs) mg/L mg/L mg/L mg/L mg/L mg/L	0.0003 0.00002 0.0034 0.04 0.09 10 0.072	- - - 3.4 -	<0.000010 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050	<0.000010 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050	
mg/L mg/L mg/L /OCs) mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0003 0.00002 0.0034 0.04 0.09 10 0.072 0.0005		<0.000010 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050	<0.000010 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050	
mg/L mg/L mg/L /OCs) mg/L mg/L mg/L mg/L mg/L mg/L	0.0003 0.00002 0.0034 0.04 0.09 10 0.072	- - - 3.4 -	<0.000010 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050	<0.000010 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050	
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L 0.001 mg/L - mg/L 0.3 mg/L - mg/L 0.77 mg/L 0.00002 mg/L 0.073 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.00012 mg/L 0.0008 mg/L 0.0008 mg/L 0.0012 mg/L 0.00012 mg/L 0.00012 mg/L 0.00018 mg/L 0.000018 mg/L 0.000092-0.00093 mg/L 0.000092-0.00093 mg/L 0.000000 mg/L 0.000018 mg/L 0.000000 mg/L 0.00012-0.0038 ons (PAHs)	mg/L 0.001 0.11 mg/L - - mg/L 0.3 1 mg/L 0.3 1 mg/L 0.77 0.82 mg/L 0.0703 46 mg/L 0.0012 - mg/L 0.001 - mg/L 0.001 - mg/L 0.0012 - mg/L 0.00012 - mg/L 0.00012 - mg/L 0.00012 - mg/L 0.0008 - mg/L 0.0008 - mg/L 0.00012 - mg/L 0.00013 - mg/L 0.0001 - mg/L 0.00018 0.000038 mg/L 0.00020-0.00036 0.00020-0.0021 mg/L 0.00020-0.0003 - mg/L 0.00020-0.0003 - mg/L 0.00020-0.0003 - mg/L 0.00012	mg/L 0.001 0.11 <0.00010 mg/L - - <0.00050	

Notes:

Results <u>underlined in bold italics</u> exceed the applicable long-term water quality guideline for the protection of freshwater aquatic life. Shaded results exceed the applicable short-term water quality guideline for the protection of freshwater aquatic life. ¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs.

 2 BC WQG or CWQG indicated to be variable are calculated from sample-specific measurements for temperature, field pH, total hardness and dissolved organic carbon (DOC) content.

³ When MeHg $\leq 0.5\%$ of total Hg, BC WQG = 0.00002 mg/L.

⁴ The approved BC WQG for hexavalent chromium [Cr(VI)] is 0.001 mg/L and 0.0089 mg/L for trivalent chromium [Cr(III)]. The more conservative criteria for Cr(VI) is applied to total chromium results.

The lowest applicable guidelines are shown in the table; however, water quality data was screened to all applicable guidelines.

Paramete	r	Total Methylmercury	Total Mercury			
Unit		μg/L	μg/L			
Lowest A	pplicable Guideline ¹	0.0001 ²	0.0020-0.0073 3,4			
Station	Water Type	Sample ID	Lab ID	Sampling Date		
SW-01	Lower Reach of Woodfibre Creek (near the mouth)	SW-01	VA25B3514-001	2025-06-06	<0.000020	0.00146
SW-04	Lower Reach of East Creek (near the outlet to the outfall culvert)	SW-04	VA25B3514-002	2025-06-06	0.000026	0.00051

Table E-2: Freshwater Methylmercury and Corresponding Total Mercury Results Received at the Time of Reporting.

Notes:

Results underlined in bold italics exceed the applicable long-term water quality guideline for the protection of freshwater aquatic life.

¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs.

² From BC Ambient Water Quality Guidelines for Mercury Overview Report. The methylmercury concentration threshold of 0.0001 µg/L (0.1 ng/L) is indicated as a WQG for the protection of wildlife and is set at a concentration that protects fish from mercury bioaccumulation to a level that may harm wildlife that consume fish.

³ CCME guideline for total mercury = $0.026 \ \mu g/L$. ⁴ When MeHg $\leq 0.5\%$ of total Hg, BC WQG = $0.02 \ \mu g/L$. When MeHg > 0.5% of total Hg, BC WQG = 0.0001/(MeHg/Total Hg). Detection limit values are used to calculate the WQG for result reported as not detected.

Non-detect results are screened using the detection limit value.

Table E-3: Freshwater Dioxin and Furan Toxicity Equivalency Quantity (TEQ) Results Received at the Time of Reporting.

Parameter		Lower Bound PCDD/F TEQ	Upper Bound PCDD/F TEQ			
Unit		pg/L	pg/L			
Station	Water Type	Sample ID	Lab ID	Sampling Date		
SW-01	Lower Reach of Woodfibre Creek (near the mouth)	SW-01	VA25B3513-001	2025-06-06	0	1.58
SW-04	Lower Reach of East Creek (near the outlet to the outfall culvert)	SW-04	VA25B3513-002	2025-06-06	0	2.00

Notes:

PCDD = polychlorinated dibenzodioxins (dioxins) PCDF = polychlorinated dibenzofurans (furans)

TEQ = toxic equivalencyLower bound PCDD/F TEQ is the sum of the toxic equivalency results for the individual PCDD/F parameters. Non-detectable parameters are assigned a value of zero (0).
Upper bound PCDD/F TEQ is the sum of the toxic equivalency results for the individual PCDD/F parameters. Non-detectable parameters are assigned the value of the detection limit.

Appendix F: Estuarine Water Receiving Environment Results

Table F-1: Summary of Mill Creek Estuary Water Quality Results Received at the Time of Reporting.

				Station SW-03	
_		Lowest Applic	able Guideline ¹	Mill Creek Estuary	
Parameter	Unit	Lowest Applie		SW-03	
		Тана Танна	Chart Tarre	VA25B4483-003 2025-06-17 14:00	
General Parameters		Long Term	Short Term	2025-00-17 14:00	
pH - Field	pH units	7.0 - 8.7	-	<u>6.5</u>	
Specific Conductivity - Field	µS/cm	-	-	196	
Temperature - Field	°C	-	-	11.4	
Salinity - Field	ppt	-	-	0.1	
Turbidity - Field TSS	MTU mg/L	-	-	5.85 <4.9	
Dissolved Oxygen - Field	mg/L	-	-	11.43	
Anions and Nutrients		1			
Sulphate	mg/L	-	-	9.46	
Chloride	mg/L	-	-	54.7	
Fluoride	mg/L	-	-	0.02	
Ammonia (N-NH ₃) Nitrite (N-NO ₂)	mg/L mg/L	-	-	<0.0030	
Nitrate (N-NO ₃)	mg/L	-		0.0176	
Total Metals		1			
Aluminum, total (T-Al)	mg/L	-	-	0.214	
Antimony, total (T-Sb)	mg/L	-	-	< 0.00010	
Arsenic, total (T-As)	mg/L	-	-	0.00011	
Barium, total (T-Ba)	mg/L mg/I	-	-	0.00301	
Beryllium, total (T-Be) Boron, total (T-B)	mg/L mg/L	-	-	<0.000020 0.032	
Cadmium, total (T-Cd)	mg/L mg/L	-	-	<0.000050	
Chromium, total (T-Cr)	mg/L mg/L	-	-	<0.00050	
Cobalt, total (T-Co)	mg/L	-	-	< 0.00010	
Copper, total (T-Cu)	mg/L	0.002	0.003	0.00077	
Iron, total (T-Fe)	mg/L	-	-	0.159	
Lead, total (T-Pb)	mg/L	0.002	0.14	0.000299	
Manganese, total (T-Mn) Mercury, total (T-Hg) ²	mg/L mg/L	0.00002	-	0.00592	
Molybdenum, total (T-Mo)	mg/L mg/L	-	-	0.000747	
Nickel, total (T-Ni)	mg/L	-	-	<0.00050	
Selenium, total (T-Se)	mg/L	-	-	< 0.000050	
Silver, total (T-Ag)	mg/L	-	-	< 0.000010	
Thallium, total (T-Tl)	mg/L	-	-	<0.000010	
Uranium, total (T-U) Vanadium, total (T-V)	mg/L mg/L	-	-	0.000153	
Zinc, total (T-Zn)	mg/L mg/L	-	-	<0.0030	
Hexavalent Chromium, total	mg/L	-	-	<0.00050	
Dissolved Metals		1			
Cadmium, dissolved (D-Cd)	mg/L	-	-	< 0.0000050	
Copper, dissolved (D-Cu)	mg/L	-	-	<0.00020	
Iron, dissolved (D-Fe)	mg/L	-	-	<0.010	
Lead, dissolved (D-Pb) Manganese, dissolved (D-Mn)	mg/L mg/L	-	-	<0.000050 0.00078	
Nickel, dissolved (D-Ni)	mg/L	-	-	<0.00078	
Strontium, dissolved (D-Sr)	mg/L	-	_	0.0262	
Vanadium, dissolved (D-V)	mg/L	-	-	< 0.00050	
Zinc, dissolved (D-Zn)	mg/L	-	-	< 0.0010	
Polycyclic Aromatic Hydrocar		1			
Acenaphthene	mg/L	-	-	<0.000010	
Acridine Anthracene	mg/L mg/L	-	-	<0.000010 <0.000010	
Benz(a)anthracene	mg/L mg/L	-	-	<0.000010	
Benzo(a)pyrene	mg/L mg/L	-	-	<0.000010	
Chrysene	mg/L	-	-	<0.000010	
Fluoranthene	mg/L	-	-	< 0.000010	
Fluorene	mg/L	-	-	<0.000010	
1-methylnaphthalene	mg/L	-	-	<0.000010	
2-methylnaphthalene Naphthalene	mg/L mg/L	-	-	<0.000010 <0.000050	
Phenanthrene	mg/L mg/L	-	-	<0.000030	
Pyrene	mg/L mg/L	-	-	<0.000020	
Quinoline	mg/L	-	-	<0.000050	
Volatile Organic Compounds (VOCs)				
Benzene	mg/L	-	-	<0.00050	
Ethylbenzene	mg/L	-	-	<0.00050	
Methyl-tert-butyl-ether	mg/L	-	-	<0.00050	
Styrene Toluene	mg/L mg/I	-	-	<0.00050 <0.00040	
Total Xylenes	mg/L mg/L	-	-	<0.00040	
Chlorobenzene	mg/L mg/L	-	-	<0.00050	
1,2-Dichlorobenzene	mg/L	_	_	<0.00050	

Results in <u>underlined in bold italics</u> exceed the applicable long-term water quality guideline for the protection of estuarine water aquatic life. Shaded results exceed the applicable short-term water quality guideline for the protection of estuarine water aquatic life. ¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs. ² When MeHg $\leq 0.5\%$ of total Hg, BC WQG = 0.00002 mg/L.

Appendix G: Marine Water Receiving Environment Results

Table G-1: Summary of Marine Water Quality Results Received at the Time of Reporting

ParameterUnitGeneral ParameterspH - FieldpH utSpecific Conductivity - FieldµS/cdTemperature - Field°CSalinity - FieldNTTSSmg/Dissolved Oxygen - Fieldmg/Anions and Nutrientsmg/Sulphatemg/Chloridemg/Mitrite (N-NO2)mg/Nitrite (N-NO3)mg/Nitrite (N-NO3)mg/Mitrite (N-NO3)mg/Mitrite (N-NO3)mg/Salinity , total (T-Al)mg/Animony, total (T-As)mg/Antimony, total (T-Ba)mg/Barium, total (T-Ba)mg/Barium, total (T-Cd)mg/Codmium, total (T-Cd)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Manganese, total (T-Mn)mg/Manganese, total (T-Mn)mg/Molybdenum, total (T-Se)mg/Molybdenum, total (T-Mo)mg/Molybdenum, total (T-Mo)mg/Manganese, total (T-Mn)mg/Selenium, total (T-Se)mg/Molybdenum, total (T-Mo)mg/Silver, total (T-Ag)mg/Manganese, dissolved (D-Cd)mg/Jinc, total (T-Zn)mg/Manganese, dissolved (D-Cd)mg/Jinkel, total (T-T)mg/Manganese, dissolved (D-Cd)mg/Jinkel, total (T-Ch)mg/Jinkel, total (T-Ch)mg/Manganese, dissolved (D-Cd)mg/Jinkel, tot	nits cm	Lowest A Guide		0.5 m Below Surface IDZ-W1-0.5 VA25B4487- 001 2025-06-17 9:00 <u>6.54</u> 3211 12.5 1.69 13.05 6.0 10.37 115 864 <0.400	Station IDZ-W1 2 m Below Surface IDZ-W1-2m VA25B4487- 002 2025-06-17 8:40 7.23 7286 13.0 4.03 10.77 2.0 10.77 2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.0216 <0.000 0.0846 <0.0010 0.0012	2 m Above Seafloor IDZ-W1-SF VA25B4487- 003 2025-06-17 8:15 7.62 47191 9.9 30.5 2.16 <2.0 7.31 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	0.5 m Below Surface IDZ-W2-0.5 VA25B4487- 004 2025-06-17 9:40 7.45 3526 12.6 1.87 12.43 6.2 10.97 188 1380 <0.400	Station IDZ-W2 2 m Below Surface IDZ-W2-2m VA25B4487- 005 2025-06-17 9:25 8.09 12223 13.0 7.03 10.33 5.8 10.79 185 1350 <0.400 0.0282 <0.0200 0.452 0.345	2 m Above Seafloor IDZ-W2-SF VA25B4487- 006 2025-06-17 9:15 7.59 47279 9.8 30.56 2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500
General Parameters pH - Field pH uSpecific Conductivity - Field μ S/cTemperature - Field \circ CSalinity - Field pp Turbidity - FieldNTTSS $mg/$ Dissolved Oxygen - Field $mg/$ Anions and Nutrients $mg/$ Sulphate $mg/$ Chloride $mg/$ Fluoride $mg/$ Ammonia (N-NH3) $mg/$ Nitrite (N-NO2) $mg/$ Nitrate (N-NO3) $mg/$ Antimony, total (T-Al) $mg/$ Antimony, total (T-As) $mg/$ Barium, total (T-Ba) $mg/$ Beryllium, total (T-Cq) $mg/$ Cadmium, total (T-Cq) $mg/$ Cadmium, total (T-Cq) $mg/$ Cobalt, total (T-Pb) $mg/$ Maganese, total (T-Mn) $mg/$ Marganese, total (T-Mn) $mg/$ Molybdenum, total (T-Se) $mg/$ Molybdenum, total (T-Mo) $mg/$ Nickel, total (T-Ni) $mg/$ Selenium, total (T-Se) $mg/$ Nickel, total (T-Ni) $mg/$ Marganese, total (T-Mn) $mg/$ Silver, total (T-Ag) $mg/$ Malum, total (T-C) $mg/$ Sulper, total (T-Ag) $mg/$ Silver, total (T-Ag) $mg/$ Malum, dissolved (D-Cu) $mg/$ Vanadium, dissolved (D-Ch) $mg/$ Vanadium, dissolved (D-Ch) $mg/$ Vanadium, dissolved (D-Ni) $mg/$ Vanadium, dissolved (D-Sr) $mg/$ Vanadium, dissolved (D-Ni)<	nits cm	Guide Long Term 7.0 - 8.7 - Narrative ² Narrative ² Narrative ² Narrative ² - - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	Pline ¹ Short Term - - - Narrative ² Narrative ² Narrative ² - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -	IDZ-W1-0.5 VA25B4487- 001 2025-06-17 9:00 6.54 3211 12.5 1.69 13.05 6.0 10.37 115 864 <0.400	IDZ-W1-2m VA25B4487- 002 2025-06-17 8:40 7.23 7286 13.0 4.03 10.77 2.0 10.77 2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	IDZ-W1-SF VA25B4487- 003 003 2025-06-17 8:15 7.62 47191 9.9 30.5 2.16 <2.00	IDZ-W2-0.5 VA25B4487- 004 2025-06-17 9:40 7.45 3526 12.6 1.87 12.43 6.2 10.97 188 1380 <0.400	IDZ-W2-2m VA25B4487- 005 2025-06-17 9:25 8.09 12223 13.0 7.03 10.33 5.8 10.79 185 1350 <0.400	IDZ-W2-SF VA25B4487- 006 2025-06-17 9:15 7.59 47279 9.8 30.56 2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500
General Parameters $pH - Field$ $pH ut$ Specific Conductivity - Field $\mu S/ct$ Temperature - Field $\circ Ct$ Salinity - Field NT' Turbidity - Field NT' TSS $mg/$ Dissolved Oxygen - Field $mg/$ Anions and Nutrients $mg/$ Sulphate $mg/$ Chloride $mg/$ Fluoride $mg/$ Ammonia (N-NH3) $mg/$ Nitrite (N-NO2) $mg/$ Nitrate (N-NO3) $mg/$ Antimony, total (T-Al) $mg/$ Antimony, total (T-As) $mg/$ Barium, total (T-Ba) $mg/$ Barium, total (T-Ba) $mg/$ Cadmium, total (T-Co) $mg/$ Cobalt, total (T-Co) $mg/$ Cobalt, total (T-Co) $mg/$ Marganese, total (T-Mn) $mg/$ Marganese, total (T-Mn) $mg/$ Molybdenum, total (T-Mo) $mg/$ Molybdenum, total (T-Mo) $mg/$ Nickel, total (T-Ni) $mg/$ Selenium, total (T-Se) $mg/$ Saliver, total (T-Ag) $mg/$ Molybdenum, total (T-V) $mg/$ Vanadium, total (T-U) $mg/$ Vanadium, total (T-Co) $mg/$ Silver, total (T-Ag) $mg/$ Molybdenum, total (T-Mn) $mg/$ Silver, total (T-Ag) $mg/$ Marganese, dissolved (D-Cu) $mg/$ Vanadium, dissolved (D-Ch) $mg/$ Vanadium, dissolved (D-Ch) $mg/$ Vanadium, dissolved (D-Nn) $mg/$ Vanadium, dis	nits cm	Long Term 7.0 - 8.7 - Narrative ² Narrative ² Narrative ² Narrative ² >=8 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	Short Term - - - Narrative ² Narrative ² - - - - - - - - - - - - - 0.27 ⁴ 0.0125 - - - - - -	VA25B4487- 001 2025-06-17 9:00 <u>6.54</u> 3211 12.5 1.69 13.05 6.0 10.37 115 864 <0.400 0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131	VA25B4487- 002 2025-06-17 8:40 7.23 7286 13.0 4.03 10.77 2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	VA25B4487- 003 2025-06-17 8:15 7.62 47191 9.9 30.5 2.16 <2.0 7.31 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	VA25B4487- 004 2025-06-17 9:40 7.45 3526 12.6 1.87 12.43 6.2 10.97 188 1380 <0.400 0.0079 <0.0200 <0.100	VA25B4487- 005 2025-06-17 9:25 8.09 12223 13.0 7.03 10.33 5.8 10.79 185 1350 <0.400 0.0282 <0.0200 0.452	VA25B4487- 006 2025-06-17 9:15 7.59 47279 9.8 30.56 2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500
pH - FieldpH uSpecific Conductivity - Field\u03b2/S/CTemperature - Field\u03b2/CSalinity - FieldNTTSSmg/Dissolved Oxygen - Fieldmg/Anions and Nutrientsmg/Sulphatemg/Chloridemg/Fluoridemg/Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Antimony, total (T-Al)mg/Antimony, total (T-Sb)mg/Arsenic, total (T-Ba)mg/Barium, total (T-Cd)mg/Boron, total (T-Cd)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Manganese, total (T-Mn)mg/Manganese, total (T-Mn)mg/Silver, total (T-Sb)mg/Molybdenum, total (T-Mo)mg/Molybdenum, total (T-Mo)mg/Silver, total (T-Ch)mg/Manganese, total (T-Mn)mg/Manganese, total (T-Mn)mg/Silver, total (T-Ag)mg/Vanadium, total (T-V)mg/Jilter, total (T-Zn)mg/Manganese, dissolved (D-Cu)mg/Lead, dissolved (D-Fe)mg/Manganese, dissolved (D-Mn)mg/Manganese, dissolved (D-Mn)mg/Jinc, dissolved (D-Ni)mg/Manganese, dissolved (D-Mn)mg/Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-	nits cm C C T C T T T T T T T T T T T T T T T	7.0 - 8.7 - Narrative ² Narrative ² Narrative ² Narrative ² >=8 0.0125 - 0.1 1.2 0.00012	- - Narrative ² Narrative ² - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - - - - -	001 2025-06-17 9:00 6.54 3211 12.5 1.69 13.05 6.0 10.37 115 864 <0.400 0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131	002 2025-06-17 8:40 7.23 7286 13.0 4.03 10.77 2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	003 2025-06-17 8:15 7.62 47191 9.9 30.5 2.16 <2.0 7.31 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	004 2025-06-17 9:40 7.45 3526 12.6 1.87 12.43 6.2 10.97 188 1380 <0.400 0.0079 <0.0200 <0.100	005 2025-06-17 9:25 8.09 12223 13.0 7.03 10.33 5.8 10.79 185 1350 <0.400 0.0282 <0.0200 0.452	006 2025-06-17 9:15 7.59 47279 9.8 30.56 2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500
pH - FieldpH uSpecific Conductivity - Field\u03b2/S/CTemperature - Field\u03b2/CSalinity - FieldNTTSSmg/Dissolved Oxygen - Fieldmg/Anions and Nutrientsmg/Sulphatemg/Chloridemg/Fluoridemg/Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Antimony, total (T-Al)mg/Antimony, total (T-Sb)mg/Arsenic, total (T-Ba)mg/Barium, total (T-Cd)mg/Boron, total (T-Cd)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Manganese, total (T-Mn)mg/Manganese, total (T-Mn)mg/Silver, total (T-Sb)mg/Molybdenum, total (T-Mo)mg/Molybdenum, total (T-Mo)mg/Silver, total (T-Ch)mg/Manganese, total (T-Mn)mg/Manganese, total (T-Mn)mg/Silver, total (T-Ag)mg/Vanadium, total (T-V)mg/Jilter, total (T-Zn)mg/Manganese, dissolved (D-Cu)mg/Lead, dissolved (D-Fe)mg/Manganese, dissolved (D-Mn)mg/Manganese, dissolved (D-Mn)mg/Jinc, dissolved (D-Ni)mg/Manganese, dissolved (D-Mn)mg/Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-	nits cm C C T C T T T T T T T T T T T T T T T	7.0 - 8.7 - Narrative ² Narrative ² Narrative ² Narrative ² >=8 0.0125 - 0.1 1.2 0.00012	- - Narrative ² Narrative ² - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - - - - -	2025-06-17 9:00 <u>6.54</u> 3211 12.5 1.69 13.05 6.0 10.37 115 864 <0.400 0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131	2025-06-17 8:40 7.23 7286 13.0 4.03 10.77 2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	2025-06-17 8:15 7.62 47191 9.9 30.5 2.16 <2.0 7.31 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	2025-06-17 9:40 7.45 3526 12.6 1.87 12.43 6.2 10.97 188 1380 <0.400 0.0079 <0.0200 <0.100	2025-06-17 9:25 8.09 12223 13.0 7.03 10.33 5.8 10.79 185 1350 <0.400 0.0282 <0.0200 0.452	2025-06-17 9:15 7.59 47279 9.8 30.56 2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500
pH - FieldpH uSpecific Conductivity - Field\u03b2/S/CTemperature - Field\u03b2/S/CSalinity - FieldNTTSSmg/Dissolved Oxygen - Fieldmg/Anions and Nutrientsmg/Sulphatemg/Chloridemg/Fluoridemg/Amionia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrite (N-NO3)mg/Antimony, total (T-Al)mg/Antimony, total (T-Sb)mg/Arsenic, total (T-Ba)mg/Barium, total (T-Cd)mg/Boron, total (T-Cd)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Manganese, total (T-Mn)mg/Manganese, total (T-Mn)mg/Silver, total (T-Pb)mg/Molybdenum, total (T-Mo)mg/Mickel, total (T-Ni)mg/Silver, total (T-Ag)mg/Silver, total (T-Ag)mg/Manganese, dissolved (D-Cd)mg/Vanadium, dissolved (D-Cd)mg/Copper, dissolved (D-Ni)mg/Silver, dissolved (D-Ni)mg/Manganese, dissolved (D-Mn)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Sitrontium, dissolved (D-Ni)mg/Sitrontium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Copper, dissolved (D-Ni)mg/Sitrontium, dissolved (D-Ni)mg/ <t< th=""><th>ст ст ст ст ст ст ст ст ст ст</th><th>- Narrative ² Narrative ² Narrative ² >=8 - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012</th><th>- Narrative ² Narrative ² - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -</th><th>6.54 3211 12.5 1.69 13.05 6.0 10.37 115 864 <0.400 0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131</th><th>7.23 7286 13.0 4.03 10.77 2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010</th><th>7.62 47191 9.9 30.5 2.16 <2.0 7.31 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010</th><th>7.45 3526 12.6 1.87 12.43 6.2 10.97 188 1380 <0.400 0.0079 <0.0200 <0.100 0.382</th><th>8.09 12223 13.0 7.03 10.33 5.8 10.79 185 1350 <0.400 0.0282 <0.0200 0.452</th><th>7.59 47279 9.8 30.56 2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500</th></t<>	ст ст ст ст ст ст ст ст ст ст	- Narrative ² Narrative ² Narrative ² >=8 - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	- Narrative ² Narrative ² - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -	6.54 3211 12.5 1.69 13.05 6.0 10.37 115 864 <0.400 0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131	7.23 7286 13.0 4.03 10.77 2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	7.62 47191 9.9 30.5 2.16 <2.0 7.31 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	7.45 3526 12.6 1.87 12.43 6.2 10.97 188 1380 <0.400 0.0079 <0.0200 <0.100 0.382	8.09 12223 13.0 7.03 10.33 5.8 10.79 185 1350 <0.400 0.0282 <0.0200 0.452	7.59 47279 9.8 30.56 2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500
Specific Conductivity - Field μ S/cTemperature - Field°CSalinity - FieldNTTurbidity - FieldNTTSSmg/Dissolved Oxygen - Fieldmg/Anions and Nutrientsmg/Sulphatemg/Chloridemg/Fluoridemg/Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Anions, total (T-Al)mg/Animony, total (T-Sb)mg/Arimony, total (T-Ba)mg/Barium, total (T-Ba)mg/Boron, total (T-B)mg/Cadmium, total (T-Cd)mg/Cobalt, total (T-Co)mg/Copper, total (T-Co)mg/Copper, total (T-Cu)mg/Manganese, total (T-Mn)mg/Manganese, total (T-Mn)mg/Molybdenum, total (T-Mo)mg/Molybdenum, total (T-Ni)mg/Manganese, total (T-Mn)mg/Marcury, total (T-Re)mg/Silver, total (T-Se)mg/Manganese, total (T-Mn)mg/Mickel, total (T-Ni)mg/Silver, total (T-Ag)mg/Thallium, total (T-V)mg/Vanadium, total (T-V)mg/Silver, total (T-Zn)mg/Manganese, dissolved (D-Cu)mg/Jissolved Metalsmg/Cadmium, dissolved (D-Ni)mg/Sicolved Metalsmg/Cadmium, dissolved (D-Ni)mg/Sitorotium, dissolved (D-Ni)mg/Ma	ст ст ст ст ст ст ст ст ст ст	- Narrative ² Narrative ² Narrative ² >=8 - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	- Narrative ² Narrative ² - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -	$\begin{array}{r} 3211\\ 12.5\\ 1.69\\ 13.05\\ 6.0\\ 10.37\\ \hline \\ 115\\ 864\\ <0.400\\ 0.0061\\ <0.0200\\ <0.100\\ \hline \\ 0.455\\ <0.0010\\ <0.00040\\ 0.0131\\ \hline \end{array}$	$\begin{array}{c} 7286\\ 13.0\\ 4.03\\ 10.77\\ 2.0\\ 10.77\\ \end{array}$ $\begin{array}{c} 1600\\ 11700\\ <2.00\\ 0.0216\\ <0.100\\ <0.500\\ \end{array}$ $\begin{array}{c} 0.0846\\ <0.0010\\ \end{array}$	47191 9.9 30.5 2.16 <2.0 7.31 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	$\begin{array}{c} 3526 \\ 12.6 \\ 1.87 \\ 12.43 \\ 6.2 \\ 10.97 \\ \hline \\ 188 \\ 1380 \\ < 0.400 \\ 0.0079 \\ < 0.0200 \\ < 0.0200 \\ < 0.100 \\ \hline \\ 0.382 \\ \end{array}$	$\begin{array}{c c} 12223 \\ \hline 13.0 \\ \hline 7.03 \\ \hline 10.33 \\ \hline 5.8 \\ \hline 10.79 \\ \hline \\ 185 \\ \hline 1350 \\ < 0.400 \\ \hline 0.0282 \\ < 0.0200 \\ \hline 0.452 \\ \hline \end{array}$	47279 9.8 30.56 2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500
Temperature - Field°CSalinity - FieldNTTSSmg/Dissolved Oxygen - Fieldmg/Anions and Nutrientsmg/Sulphatemg/Chloridemg/Fluoridemg/Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Antimony, total (T-Al)mg/Antimony, total (T-Sb)mg/Arsenic, total (T-Ba)mg/Barium, total (T-Ba)mg/Boron, total (T-Ba)mg/Cobalt, total (T-C0)mg/Cobalt, total (T-C0)mg/Cobalt, total (T-C0)mg/Cobalt, total (T-C0)mg/Manganese, total (T-Mn)mg/Manganese, total (T-Mn)mg/Molybdenum, total (T-Mo)mg/Mickel, total (T-Pb)mg/Manganese, total (T-Mn)mg/Silver, total (T-Se)mg/Silver, total (T-Ag)mg/Silver, total (T-Ag)mg/Yanadium, total (T-V)mg/Vanadium, total (T-V)mg/Silver, total (T-Ag)mg/Jilum, total (T-V)mg/Jissolved Metalsmg/Cadmium, dissolved (D-Cu)mg/Jissolved Metalsmg/Cadmium, dissolved (D-Nn)mg/Jissolved (D-Pb)mg/Jissolved (D-Ni)mg/Jissolved (D-Ni)mg/Jissolved (D-Ni)mg/Jissolved (D-Ni)mg/Jissolved (D-Ni)mg/Jisso	C Image: Constraint of the second s	- Narrative ² Narrative ² Narrative ² >=8 - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	- Narrative ² Narrative ² - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -	$\begin{array}{c} 12.5\\ 1.69\\ 13.05\\ 6.0\\ 10.37\\ \hline \\ \\ 115\\ 864\\ <0.400\\ 0.0061\\ <0.0200\\ <0.100\\ \hline \\ \\ 0.455\\ <0.0010\\ <0.00040\\ 0.0131\\ \hline \end{array}$	$\begin{array}{c} 13.0 \\ 4.03 \\ 10.77 \\ 2.0 \\ 10.77 \\ \hline \\ 1600 \\ 11700 \\ < 2.00 \\ 0.0216 \\ < 0.100 \\ < 0.500 \\ \hline \\ 0.0846 \\ < 0.0010 \\ \end{array}$	9.9 30.5 2.16 <2.0 <u>7.31</u> 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	$\begin{array}{c} 12.6 \\ 1.87 \\ 12.43 \\ 6.2 \\ 10.97 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c c} 13.0 \\ \hline 7.03 \\ 10.33 \\ \hline 5.8 \\ 10.79 \\ \hline \\ 185 \\ 1350 \\ < 0.400 \\ 0.0282 \\ < 0.0200 \\ 0.452 \\ \hline \end{array}$	9.8 30.56 2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500
Salinity - FieldppTurbidity - FieldNTTSSmg/Dissolved Oxygen - Fieldmg/Anions and Nutrientsmg/Sulphatemg/Chloridemg/Fluoridemg/Mironia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Antimony, total (T-Al)mg/Antimony, total (T-Sb)mg/Barium, total (T-Ba)mg/Barium, total (T-Ba)mg/Boron, total (T-Cd)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Manganese, total (T-Mn)mg/Manganese, total (T-Mn)mg/Molybdenum, total (T-Mo)mg/Molybdenum, total (T-Mo)mg/Mickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Molybdenum, total (T-Mo)mg/Silver, total (T-Ni)mg/Silver, total (T-Ag)mg/Thallium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Manganese, dissolved (D-Mn)mg/Vanadium, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Strontium, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/ </td <td>t </td> <td>Narrative ² Narrative ² >=8 - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012</td> <td>- Narrative ² Narrative ² </td> <td>$\begin{array}{c} 1.69\\ 13.05\\ 6.0\\ 10.37\\ \end{array}$ $\begin{array}{c} 115\\ 864\\ <0.400\\ 0.0061\\ <0.0200\\ <0.100\\ \end{array}$ $\begin{array}{c} 0.455\\ <0.0010\\ <0.00040\\ 0.0131\\ \end{array}$</td> <td>4.03 10.77 2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010</td> <td>30.5 2.16 <2.0 7.31 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010</td> <td>$\begin{array}{r} 1.87\\ 12.43\\ 6.2\\ 10.97\\ \hline 188\\ 1380\\ <0.400\\ 0.0079\\ <0.0200\\ <0.100\\ \hline 0.382\\ \end{array}$</td> <td>$\begin{array}{c} 7.03 \\ 10.33 \\ 5.8 \\ 10.79 \\ \hline \\ 185 \\ 1350 \\ < 0.400 \\ 0.0282 \\ < 0.0200 \\ 0.452 \\ \hline \end{array}$</td> <td>30.56 2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500</td>	t	Narrative ² Narrative ² >=8 - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	- Narrative ² Narrative ² 	$\begin{array}{c} 1.69\\ 13.05\\ 6.0\\ 10.37\\ \end{array}$ $\begin{array}{c} 115\\ 864\\ <0.400\\ 0.0061\\ <0.0200\\ <0.100\\ \end{array}$ $\begin{array}{c} 0.455\\ <0.0010\\ <0.00040\\ 0.0131\\ \end{array}$	4.03 10.77 2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	30.5 2.16 <2.0 7.31 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	$ \begin{array}{r} 1.87\\ 12.43\\ 6.2\\ 10.97\\ \hline 188\\ 1380\\ <0.400\\ 0.0079\\ <0.0200\\ <0.100\\ \hline 0.382\\ \end{array} $	$\begin{array}{c} 7.03 \\ 10.33 \\ 5.8 \\ 10.79 \\ \hline \\ 185 \\ 1350 \\ < 0.400 \\ 0.0282 \\ < 0.0200 \\ 0.452 \\ \hline \end{array}$	30.56 2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500
Turbidity - FieldNTTSSmg/Dissolved Oxygen - Fieldmg/Anions and Nutrientsmg/Sulphatemg/Chloridemg/Fluoridemg/Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Antimony, total (T-Al)mg/Antimony, total (T-As)mg/Barium, total (T-Ba)mg/Beryllium, total (T-Cd)mg/Boron, total (T-Cd)mg/Cobalt, total (T-Cd)mg/Cobalt, total (T-Co)mg/Copper, total (T-Cu)mg/Iron, total (T-Fe)mg/Marganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Molybdenum, total (T-Mo)mg/Mickel, total (T-Ni)mg/Silver, total (T-Ag)mg/Silver, total (T-Ag)mg/Yanadium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Jisolved Metalsmg/Cadmium, dissolved (D-Cu)mg/Marganese, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/ <tr< td=""><td>U /L /L /L</td><td>Narrative ² Narrative ² >=8 - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012</td><td>Narrative ² - - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -</td><td>$\begin{array}{c} 13.05 \\ 6.0 \\ 10.37 \\ \hline \\ 115 \\ 864 \\ < 0.400 \\ 0.0061 \\ < 0.0200 \\ < 0.100 \\ \hline \\ 0.455 \\ < 0.0010 \\ < 0.00040 \\ 0.0131 \\ \end{array}$</td><td>10.77 2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010</td><td>2.16 <2.0 7.31 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010</td><td>12.43 6.2 10.97 188 1380 <0.400 0.0079 <0.0200 <0.100 0.382</td><td>10.33 5.8 10.79 185 1350 <0.400 0.0282 <0.0200 0.452</td><td>2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500</td></tr<>	U /L /L /L	Narrative ² Narrative ² >=8 - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	Narrative ² - - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -	$\begin{array}{c} 13.05 \\ 6.0 \\ 10.37 \\ \hline \\ 115 \\ 864 \\ < 0.400 \\ 0.0061 \\ < 0.0200 \\ < 0.100 \\ \hline \\ 0.455 \\ < 0.0010 \\ < 0.00040 \\ 0.0131 \\ \end{array}$	10.77 2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	2.16 <2.0 7.31 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	12.43 6.2 10.97 188 1380 <0.400 0.0079 <0.0200 <0.100 0.382	10.33 5.8 10.79 185 1350 <0.400 0.0282 <0.0200 0.452	2.13 <2.0 7.68 2220 16100 <2.00 0.0064 <0.100 <0.500
TSSmg/Dissolved Oxygen - Fieldmg/Anions and NutrientsSulphateSulphatemg/Chloridemg/Fluoridemg/Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Total Metalsmg/Aluminum, total (T-Al)mg/Antimony, total (T-Sb)mg/Barium, total (T-Ba)mg/Beryllium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cq)mg/Cobalt, total (T-Cq)mg/Cobalt, total (T-Cq)mg/Copper, total (T-Cq)mg/Marganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Jiluim, total (T-Y)mg/Silver, total (T-Ag)mg/Yanadium, total (T-V)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Marganese, dissolved (D-Cd)mg/Jissolved Metalsmg/Cadmium, dissolved (D-Ch)mg/Marganese, dissolved (D-Nn)mg/Vanadium, dissolved (D-Nn)mg/Jickel, dissolved (D-Pb)mg/Marganese, dissolved (D-Nn)mg/Jickel, dissolved (D-Nn)mg/Jickel, dissolved (D-Nn)mg/Jickel, dissolved (D-Nn)mg/Jickel, dissolved (D-Nn)mg/ </td <td>/L /L /L</td> <td>Narrative ² >=8 - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012</td> <td>Narrative ² - - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -</td> <td>$\begin{array}{c} 6.0\\ 10.37\\ \\ \hline \\ 115\\ 864\\ <0.400\\ 0.0061\\ <0.0200\\ <0.100\\ \\\hline \\ 0.455\\ <0.0010\\ <0.00040\\ 0.0131\\ \end{array}$</td> <td>2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010</td> <td><2.0 <u>7.31</u> 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010</td> <td>6.2 10.97 188 1380 <0.400 0.0079 <0.0200 <0.100 0.382</td> <td>5.8 10.79 185 1350 <0.400 0.0282 <0.0200 0.452</td> <td><2.0 <u>7.68</u> 2220 16100 <2.00 0.0064 <0.100 <0.500</td>	/L	Narrative ² >=8 - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	Narrative ² - - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -	$\begin{array}{c} 6.0\\ 10.37\\ \\ \hline \\ 115\\ 864\\ <0.400\\ 0.0061\\ <0.0200\\ <0.100\\ \\\hline \\ 0.455\\ <0.0010\\ <0.00040\\ 0.0131\\ \end{array}$	2.0 10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	<2.0 <u>7.31</u> 2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	6.2 10.97 188 1380 <0.400 0.0079 <0.0200 <0.100 0.382	5.8 10.79 185 1350 <0.400 0.0282 <0.0200 0.452	<2.0 <u>7.68</u> 2220 16100 <2.00 0.0064 <0.100 <0.500
Dissolved Oxygen - Fieldmg/Anions and NutrientsSulphatemg/Chloridemg/Fluoridemg/Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Total Metalsmg/Aluminum, total (T-Al)mg/Antimony, total (T-Sb)mg/Barium, total (T-Ba)mg/Beryllium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cq)mg/Cobalt, total (T-Cq)mg/Cobalt, total (T-Cq)mg/Cobalt, total (T-Cq)mg/Marganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mn)mg/Mitkel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Silver, total (T-Ag)mg/Jing, total (T-Y)mg/Silver, total (T-Ag)mg/Silver, total (T-Ch)mg/Jing, total (T-Y)mg/Silver, total (T-Ag)mg/Jing, total (T-Y)mg/Jing, total (T-Y)mg/Jing, total (T-Zn)mg/Jing, dissolved (D-Cu)mg/Jing, dissolved (D-Cu)mg/Jickel, dissolved (D-Pb)mg/Jickel, dissolved (D-Pb)mg/Jickel, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Jickel, dissolved	/L	>=8 - - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	- - 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - - -	10.37 115 864 <0.400 0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131	10.77 1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	7.31 2260 16300 <2.00	10.97 188 1380 <0.400 0.0079 <0.0200 <0.100 0.382	10.79 185 1350 <0.400 0.0282 <0.0200 0.452	7.68 2220 16100 <2.00
Anions and NutrientsSulphatemg/Sulphatemg/Chloridemg/Fluoridemg/Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Total Metalsmg/Aluminum, total (T-Al)mg/Antimony, total (T-Sb)mg/Arsenic, total (T-As)mg/Barium, total (T-Ba)mg/Boron, total (T-B)mg/Boron, total (T-Cq)mg/Cadmium, total (T-Cq)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Copper, total (T-Cu)mg/Iron, total (T-Pb)mg/Manganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Silver, total (T-Ag)mg/Silver, total (T-Ag)mg/Jilum, total (T-Se)mg/Silver, total (T-Ag)mg/Jilum, total (T-Tl)mg/Vanadium, total (T-V)mg/Jilum, total (T-V)mg/Jilum, total (T-V)mg/Jilor, total (T-Zn)mg/Jinc, total (T-Zn)mg/Jisolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Jica, dissolved (D-Pb)mg/Jica, dissolved (D-Ph)mg/Jica, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Jinc, dissolved (D-Ni)mg/	/L	- - 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	- 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - - -	115 864 <0.400 0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131	1600 11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	2260 16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	188 1380 <0.400 0.0079 <0.0200 <0.100 0.382	185 1350 <0.400 0.0282 <0.0200 0.452	2220 16100 <2.00 0.0064 <0.100 <0.500
Sulphatemg/ ChlorideChloridemg/Fluoridemg/Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrite (N-NO3)mg/Total MetalsAluminum, total (T-Al)mg/Antimony, total (T-Sb)mg/Barium, total (T-As)mg/Barium, total (T-Ba)mg/Beryllium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cd)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Copper, total (T-Cu)mg/Iron, total (T-Fe)mg/Manganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Silver, total (T-Ni)mg/Silver, total (T-Ag)mg/Yanadium, total (T-Se)mg/Silver, total (T-Ag)mg/Thallium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Iron, dissolved (D-Cu)mg/Iron, dissolved (D-Cu)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Pb)mg/Manganese, dissolved (D-Nn)mg/Vanadium, dissolved (D-Nn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-Ni)mg/Vanadium	/L /L	- 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	- 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - - -	864 <0.400 0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131	11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	1380 <0.400 0.0079 <0.0200 <0.100 0.382	1350 <0.400 0.0282 <0.0200 0.452	16100 <2.00 0.0064 <0.100 <0.500
Chloridemg/Fluoridemg/Fluoridemg/Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Total MetalsAluminum, total (T-Al)mg/Antimony, total (T-Sb)mg/Arsenic, total (T-As)mg/Barium, total (T-Ba)mg/Boron, total (T-B)mg/Boron, total (T-B)mg/Cadmium, total (T-Cq)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Copper, total (T-Cu)mg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Marganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Silver, total (T-Ag)mg/Jilum, total (T-Se)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Jiloer, total (T-Zn)mg/Jisolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Jisolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Vanadium, dissolved (D-Ni)mg/Nickel, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/ <td>/L /L /L /L</td> <td>- 2.0-22³ - 3.7 - 0.0125 - 0.1 1.2 0.00012</td> <td>- 1.5 13-148³ - 339 - 0.27⁴ 0.0125 - - -</td> <td>864 <0.400 0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131</td> <td>11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010</td> <td>16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010</td> <td>1380 <0.400 0.0079 <0.0200 <0.100 0.382</td> <td>1350 <0.400 0.0282 <0.0200 0.452</td> <td>16100 <2.00 0.0064 <0.100 <0.500</td>	/L /L	- 2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	- 1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - - -	864 <0.400 0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131	11700 <2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	16300 <2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	1380 <0.400 0.0079 <0.0200 <0.100 0.382	1350 <0.400 0.0282 <0.0200 0.452	16100 <2.00 0.0064 <0.100 <0.500
Fluoridemg/ mg/Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Total Metalsmg/Aluminum, total (T-Al)mg/Antimony, total (T-Sb)mg/Arsenic, total (T-As)mg/Barium, total (T-Ba)mg/Barium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cd)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Cu)mg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Marganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Silver, total (T-Ag)mg/Jilver, total (T-Ag)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Jilver, total (T-Zn)mg/Jisolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Manganese, dissolved (D-Cu)mg/Jisolved Metalsmg/Cadmium, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Nickel, dissolved (D-Ni)mg/Jic, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Jic, dissolved (D-Ni)mg/Jic, dissolved (D-Ni)mg/Jic, dissolved (D-Ni)mg/Jic, dissolved (D-Ni)mg/Jic, dissolved (/L /L	2.0-22 ³ - 3.7 - 0.0125 - 0.1 1.2 0.00012	1.5 13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -	<0.400 0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131	<2.00 0.0216 <0.100 <0.500 0.0846 <0.0010	<2.00 0.0131 <0.100 <0.500 0.0271 <0.0010	<0.400 0.0079 <0.0200 <0.100 0.382	<0.400 0.0282 <0.0200 0.452	<2.00 0.0064 <0.100 <0.500
Ammonia (N-NH3)mg/Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Total MetalsAluminum, total (T-Al)mg/Antimony, total (T-Sb)mg/Arsenic, total (T-As)mg/Barium, total (T-Ba)mg/Beryllium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cd)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Copper, total (T-Cu)mg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Marganese, total (T-Mn)mg/Mickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Nickel, total (T-Ni)mg/Silver, total (T-Ag)mg/Jilum, total (T-Se)mg/Silver, total (T-Cn)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Jilor, total (T-Zn)mg/Marganese, dissolved (D-Cd)mg/Iron, dissolved (D-Fe)mg/Lead, dissolved (D-Pb)mg/Marganese, dissolved (D-Nn)mg/Nickel, dissolved (D-Ni)mg/Nickel, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/ </td <td>/L /L /L /L</td> <td>- 3.7 - 0.0125 - 0.1 1.2 0.00012</td> <td>13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -</td> <td>0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131</td> <td>0.0216 <0.100 <0.500 0.0846 <0.0010</td> <td>0.0131 <0.100 <0.500 0.0271 <0.0010</td> <td>0.0079 <0.0200 <0.100 0.382</td> <td>0.0282 <0.0200 0.452</td> <td>0.0064 <0.100 <0.500</td>	/L /L	- 3.7 - 0.0125 - 0.1 1.2 0.00012	13-148 ³ - 339 - 0.27 ⁴ 0.0125 - -	0.0061 <0.0200 <0.100 0.455 <0.0010 <0.00040 0.0131	0.0216 <0.100 <0.500 0.0846 <0.0010	0.0131 <0.100 <0.500 0.0271 <0.0010	0.0079 <0.0200 <0.100 0.382	0.0282 <0.0200 0.452	0.0064 <0.100 <0.500
Nitrite (N-NO2)mg/Nitrate (N-NO3)mg/Total MetalsAluminum, total (T-Al)mg/Antimony, total (T-Sb)mg/Arsenic, total (T-As)mg/Barium, total (T-Ba)mg/Beryllium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cd)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Co)mg/Copper, total (T-Cu)mg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Marganese, total (T-Mn)mg/Mitckel, total (T-Ni)mg/Silver, total (T-Se)mg/Silver, total (T-Ag)mg/Uranium, total (T-Se)mg/Silver, total (T-Cn)mg/Vanadium, total (T-U)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Manganese, dissolved (D-Mn)mg/Manganese, dissolved (D-Nn)mg/Nickel, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-V) <td>/L //L /L //L</td> <td>- 3.7 - 0.0125 - 0.1 1.2 0.00012</td> <td>339 </td> <td><0.100 0.455 <0.0010 <0.00040 0.0131</td> <td><0.100 <0.500 0.0846 <0.0010</td> <td><0.500 0.0271 <0.0010</td> <td><0.100</td> <td>0.452</td> <td><0.500</td>	/L //L	- 3.7 - 0.0125 - 0.1 1.2 0.00012	339 	<0.100 0.455 <0.0010 <0.00040 0.0131	<0.100 <0.500 0.0846 <0.0010	<0.500 0.0271 <0.0010	<0.100	0.452	<0.500
Total MetalsAluminum, total (T-Al)mg/Antimony, total (T-Sb)mg/Arsenic, total (T-As)mg/Barium, total (T-Ba)mg/Beryllium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cd)mg/Cadmium, total (T-Co)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Cu)mg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Manganese, total (T-Mn)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ca)mg/Uranium, total (T-Se)mg/Jilver, total (T-Ca)mg/Silver, total (T-Ag)mg/Jilver, total (T-Ca)mg/Uranium, total (T-V)mg/Vanadium, total (T-V)mg/Jinc, total (T-Zn)mg/Jisolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Manganese, dissolved (D-Ch)mg/Jica, dissolved (D-Pb)mg/Manganese, dissolved (D-Nn)mg/Manganese, dissolved (D-Nn)mg/Vanadium, dissolved (D-Nn)mg/Vana	Л. Л. Л. Л. Л. Л. Л. Л.	- 0.0125 - 0.1 1.2 0.00012	0.27 ⁴ 0.0125	0.455 <0.0010 <0.00040 0.0131	0.0846 <0.0010	0.0271 <0.0010	0.382		
Total MetalsAluminum, total (T-Al)mg/Antimony, total (T-Sb)mg/Arsenic, total (T-As)mg/Barium, total (T-Ba)mg/Beryllium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cd)mg/Cadmium, total (T-Co)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Cu)mg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Manganese, total (T-Mn)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Cu)mg/Uranium, total (T-Se)mg/Silver, total (T-Cu)mg/Vanadium, total (T-V)mg/Uranium, total (T-V)mg/Vanadium, total (T-V)mg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Iron, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/ <td>Л. Л. Л. Л. Л. Л. Л. Л. </td> <td>0.0125 - 0.1 1.2 0.00012</td> <td>0.0125 - - -</td> <td><0.0010 <0.00040 0.0131</td> <td>< 0.0010</td> <td>< 0.0010</td> <td></td> <td>0 345</td> <td>0.0411</td>	Л. Л. Л. Л. Л. Л. Л. Л.	0.0125 - 0.1 1.2 0.00012	0.0125 - - -	<0.0010 <0.00040 0.0131	< 0.0010	< 0.0010		0 345	0.0411
Antimony, total (T-Sb)mg/Arsenic, total (T-As)mg/Barium, total (T-Ba)mg/Beryllium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cd)mg/Chromium, total (T-Cd)mg/Cobalt, total (T-Co)mg/Copper, total (T-Cu)mg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Marganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Uranium, total (T-Tl)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Itanium, total (T-Tl)mg/Uranium, total (T-V)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Inc, total (T-Zn)mg/Iron, dissolved (D-Cd)mg/Iron, dissolved (D-Cu)mg/Iron, dissolved (D-Pb)mg/Marganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Nickel, dissolved (D-Ni)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/	/L	0.0125 - 0.1 1.2 0.00012	0.0125 - - -	<0.0010 <0.00040 0.0131	< 0.0010	< 0.0010		0 345	0.0411
Arsenic, total (T-As)mg/ mg/Barium, total (T-Ba)mg/Beryllium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cd)mg/Chromium, total (T-Cd)mg/Cobalt, total (T-Co)mg/Copper, total (T-Cu)mg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Manganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Uranium, total (T-U)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Mexavalent Chromium, totalmg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Iron, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Vanadium, dissolved (D-Ni)mg/Jickel, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolv	/L /	- 0.1 1.2 0.00012	0.0125 - - -	<0.00040 0.0131			<0.0010		
Barium, total (T-Ba)mg/Beryllium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cd)mg/Chromium, total (T-Cr)mg/Cobalt, total (T-Co)mg/Copper, total (T-Cu)mg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Manganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Jhallium, total (T-Tl)mg/Vanadium, total (T-V)mg/Vanadium, total (T-V)mg/Jiver, total (T-Zn)mg/Vanadium, dissolved (D-Cd)mg/Iron, dissolved (D-Cu)mg/Iron, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/Vanadium	/L /	- 0.1 1.2 0.00012		0.0131	0.0012			<0.0010	<0.0010
Beryllium, total (T-Be)mg/Boron, total (T-B)mg/Cadmium, total (T-Cd)mg/Chromium, total (T-Cr)mg/Cobalt, total (T-Co)mg/Cobalt, total (T-Cu)mg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Manganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Cl)mg/Uranium, total (T-Tl)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Iron, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Vanadium, dissolved (D-Sr)mg/Manganese, dissolved (D-V)mg/Vanadium, dissolved (D-Ni)mg/Manganese, dissolved (D-V)mg/Vanadium, dissolved (D-Ni)mg/Strontium, dissolved (D-Ni)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Korontium, dissolved (D-Ni)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Zinc, dissolved (D-Zn)mg/Kacenaphthenemg/	/L /	0.1 1.2 0.00012	-			0.00155	<0.00040	<0.00040	0.00158
Boron, total (T-B)mg/ Cadmium, total (T-Cd)mg/ Chromium, total (T-Cr)mg/ Cobalt, total (T-Co)mg/ Cobalt, total (T-Co)mg/ Cobalt, total (T-Cu)mg/ Mg/ Lead, total (T-Pb)mg/ Mg/ Manganese, total (T-Mn)mg/ Mg/ Mercury, total (T-Hg)mg/ Mg/ Molybdenum, total (T-Mo)mg/ Mg/ Molybdenum, total (T-Mo)mg/ Mg/ Mg/ Mickel, total (T-Ni)mg/ Mg/ Mg/ Mickel, total (T-Se)mg/ Mg/ Mg/ Mg/ Mg/ Selenium, total (T-Se)mg/ Mg/ Mg/ Mg/ Mg/ Mg/ Silver, total (T-Tl)mg/ Mg/ Mg/ Mg/ Mg/ Mg/ Uranium, total (T-U)mg/ Mg/ Mg/ Mg/ Mg/ Mg/ Mg/ Manadium, total (T-V)mg/ Mg/ Mg/ Mg/ Mg/ Mg/ Mg/ Manganese, dissolved (D-Cd)mg/ Mg/ Mg/ Manganese, dissolved (D-Mn)mg/ Mg/ Mg/ Manganese, dissolved (D-Ni)mg/ Mg/ Mg/ Manganese, dissolved (D-Ni)mg/ Mg/ Mg/ Manganese, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Mg/ Mg/ Manganese, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Mg/Vanadium, dissolved (D-V)mg/Mg/Vanadium, dissolved (D-V)mg/Mg/Vanadium, di	/L	1.2 0.00012	-		0.0112	0.0103	0.0129	0.013	0.0106
Cadmium, total (T-Cd)mg/ Chromium, total (T-Cr)mg/ Cobalt, total (T-Co)mg/ Copper, total (T-Cu)mg/ Mg/ Lead, total (T-Fe)mg/ Mg/ Manganese, total (T-Mn)mg/ Mg/ Mercury, total (T-Hg)mg/ Mg/ Molybdenum, total (T-Mo)mg/ Mg/ Molybdenum, total (T-Mo)mg/ Mg/ Mg/ Molybdenum, total (T-Se)mg/ Mg/ Mg/ Mickel, total (T-Ag)mg/ Mg/ Mg/ Mg/ Selenium, total (T-Se)mg/ Mg/ Mg/ Mg/ Selenium, total (T-Tl)mg/ Mg/ Mg/ Mg/ Mg/ Selenium, total (T-U)mg/ Mg/ Mg/ Mg/ Mg/ Mg/ Manadium, total (T-V)mg/ Mg/ Mg/ Mg/ Mg/ Mg/ Vanadium, total (T-V)mg/ Manganese, dissolved (D-Cu)mg/ Mg/ Mg/ Manganese, dissolved (D-Ni)mg/ Mg/ Mg/ Manganese, dissolved (D-Ni)mg/ Mg/ Mg/ Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Mg/ Mg/ Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Mg/Manganese, dissolved (D-Ni)mg/Mg/Manganese, dissolved (D-Ni)mg/Mg/Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Manganese, dissolved (D-Ni)mg/Manganesemg/	/L /L /L /L /L /L /L /L /L	0.00012	-		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Chromium, total (T-Cr)mg/ Cobalt, total (T-Co)mg/ Copper, total (T-Cu)mg/ Copper, total (T-Cu)mg/ Marg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Manganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Thallium, total (T-Tl)mg/Uranium, total (T-U)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Iron, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Manganese, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Manganese, dissolved (D-V)mg/Strontium, dissolved (D-Ni)mg/Zinc, dissolved (D-Zn)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Acenaphthenemg/	/L /L /L /L /L /L /L /L			0.30	<u>2.61</u>	<u>3.53</u>	<0.30	0.35	<u>3.55</u>
Cobalt, total (T-Co)mg/ Copper, total (T-Cu)mg/ ImageIron, total (T-Fe)mg/Lead, total (T-Pb)mg/Manganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Thallium, total (T-Tl)mg/Uranium, total (T-U)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Hexavalent Chromium, totalmg/Copper, dissolved (D-Cu)mg/Iron, dissolved (D-Fe)mg/Manganese, dissolved (D-Mn)mg/Manganese, dissolved (D-Ni)mg/Strontium, dissolved (D-Ni)mg/Strontium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Strontium, dissolved (D-Ni)mg/Strontium, dissolved (D-Ni)mg/Strontium, dissolved (D-Ni)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/	/L /L /L /L /L /L	-	-	<0.000020 <0.00050	0.000043 <0.00050	0.000069 <0.00050	<0.00020 <0.00050	<0.00020 <0.00050	0.000083
Copper, total (T-Cu)mg/Iron, total (T-Fe)mg/Lead, total (T-Pb)mg/Manganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Thallium, total (T-Tl)mg/Uranium, total (T-U)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Hexavalent Chromium, totalmg/Dissolved Metalsmg/Cadmium, dissolved (D-Cu)mg/Iron, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Vanadium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Strontium, dissolved (D-Ni)mg/Strontium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Vanadium, dissolved (D-Ni)mg/Krontium, dissolved (D-Ni)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/	/L /L /L	-	-	0.0002	0.000118	0.000079	0.000172	0.000176	0.00030
Iron, total (T-Fe)mg/ mg/Lead, total (T-Pb)mg/Manganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Thallium, total (T-Tl)mg/Uranium, total (T-V)mg/Vanadium, total (T-V)mg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Iron, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Manganese, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Strontium, dissolved (D-Ni)mg/Strontium, dissolved (D-V)mg/Vanadium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/	/L /L	0.002	0.003	0.00118	0.00076	<0.00050	0.00107	0.00114	0.00077
Lead, total (T-Pb)mg/Manganese, total (T-Mn)mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Thallium, total (T-Tl)mg/Uranium, total (T-V)mg/Vanadium, total (T-V)mg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Iron, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Strontium, dissolved (D-V)mg/Strontium, dissolved (D-Ni)mg/Strontium, dissolved (D-Ni)mg/Strontium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/	/L	-	-	0.389	0.084	0.023	0.324	0.303	0.04
Manganese, total (T-Mn)mg/ mg/Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Thallium, total (T-Tl)mg/Uranium, total (T-U)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Hexavalent Chromium, totalmg/Dissolved Metalsmg/Copper, dissolved (D-Cd)mg/Iron, dissolved (D-Fe)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Strontium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Manganese, dissolved (D-V)mg/Kaenaphthenemg/		0.002	0.14	< 0.00010	<0.00010	<0.00010	< 0.00010	<0.00010	<0.00010
Mercury, total (T-Hg)mg/Molybdenum, total (T-Mo)mg/Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Thallium, total (T-Tl)mg/Uranium, total (T-U)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Hexavalent Chromium, totalmg/Dissolved Metalsmg/Copper, dissolved (D-Cd)mg/Iron, dissolved (D-Fe)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Strontium, dissolved (D-V)mg/Vanadium, dissolved (D-V)mg/Kaenaphthenemg/	/L	-	-	0.0141	0.0057	0.00282	0.0129	0.0125	0.00314
Nickel, total (T-Ni)mg/Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Thallium, total (T-Tl)mg/Uranium, total (T-U)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Hexavalent Chronium, totalmg/Dissolved Metalsmg/Copper, dissolved (D-Cd)mg/Iron, dissolved (D-Fe)mg/Lead, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Qinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/		0.000016 5	-	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050
Selenium, total (T-Se)mg/Silver, total (T-Ag)mg/Silver, total (T-Ag)mg/Thallium, total (T-TI)mg/Uranium, total (T-U)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Hexavalent Chromium, totalmg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Iron, dissolved (D-Fe)mg/Lead, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/	/L	-	-	0.00088	0.00709	0.00906	0.00084	0.00109	0.0097
Silver, total (T-Ag)mg/Thallium, total (T-Tl)mg/Uranium, total (T-U)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Hexavalent Chromium, totalmg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Iron, dissolved (D-Cu)mg/Iron, dissolved (D-Fe)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/	/L	0.0083	-	< 0.00050	0.0005	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Thallium, total (T-Tl)mg/Uranium, total (T-U)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Hexavalent Chromium, totalmg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Copper, dissolved (D-Cu)mg/Iron, dissolved (D-Fe)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocartors (PAcenaphthenemg/		0.002	-	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050
Uranium, total (T-U)mg/Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Hexavalent Chromium, totalmg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Copper, dissolved (D-Cu)mg/Iron, dissolved (D-Fe)mg/Lead, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/		0.0005	0.0037	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Vanadium, total (T-V)mg/Zinc, total (T-Zn)mg/Hexavalent Chromium, totalmg/Dissolved MetalsCadmium, dissolved (D-Cd)mg/Copper, dissolved (D-Cu)mg/Iron, dissolved (D-Fe)mg/Lead, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/		-	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Zinc, total (T-Zn)mg/Hexavalent Chromium, totalmg/Dissolved MetalsCadmium, dissolved (D-Cd)mg/Copper, dissolved (D-Cu)mg/Iron, dissolved (D-Fe)mg/Lead, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbons (PAcenaphthenemg/		0.005	-	0.00019 0.0012	0.00195 0.00123	0.00267 0.0016	0.000223	0.000271 0.00109	0.0027 0.0016
Hexavalent Chromium, totalmg/Dissolved Metalsmg/Cadmium, dissolved (D-Cd)mg/Copper, dissolved (D-Cu)mg/Iron, dissolved (D-Fe)mg/Lead, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbox (PAcenaphthenemg/		0.005	0.055	<0.0012	0.00123	<0.0030	<0.0030	<0.0030	< 0.0010
Dissolved MetalsCadmium, dissolved (D-Cd)mg/Copper, dissolved (D-Cu)mg/Iron, dissolved (D-Fe)mg/Lead, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/		0.0015	-	<0.00150	< 0.00150	<0.00150	<0.00150	<0.00150	<0.00150
Copper, dissolved (D-Cu)mg/Iron, dissolved (D-Fe)mg/Lead, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/			1						
Iron, dissolved (D-Fe)mg/Lead, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/	/L	-	-	< 0.000020	0.000061	0.000078	0.000026	0.000042	0.00008
Lead, dissolved (D-Pb)mg/Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbors (PAcenaphthenemg/	/L	-	-	< 0.00050	0.00069	0.00052	0.00051	0.00062	0.00078
Manganese, dissolved (D-Mn)mg/Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbons (PAcenaphthenemg/		-	-	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Nickel, dissolved (D-Ni)mg/Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbons (PAcenaphthenemg/		-	-	< 0.00010	< 0.00010	<0.00010	< 0.00010	< 0.00010	< 0.00010
Strontium, dissolved (D-Sr)mg/Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbons (PAcenaphthenemg/		-	-	0.00432	0.0034	0.00283	0.00423	0.00377	0.00343
Vanadium, dissolved (D-V)mg/Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbons (PAcenaphthenemg/		-	-	<0.00050	<0.00050	0.00053	<0.00050	<0.00050	0.00058
Zinc, dissolved (D-Zn)mg/Polycyclic Aromatic Hydrocarbons (PAcenaphthenemg/		-	-	0.358	4.35 0.00104	6.20 0.00142	0.366	3.17 0.00088	6.12 0.00141
Polycyclic Aromatic Hydrocarbons (PAcenaphthenemg/		-	-	<0.00030	<0.00104	0.00142	<0.00030	<0.0010	<0.00141
Acenaphthene mg/		-	-	<u>\0.0010</u>	<u>\0.0010</u>	0.001	<0.0010	\0.0010	~0.0010
	1	0.006	-	<0.000010	< 0.000010	<0.000010	< 0.000010	< 0.000010	< 0.000010
Internative IIIg/		-	-	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Anthracene mg/		-	-	< 0.000010	< 0.000010	<0.000010	< 0.000010	< 0.000010	< 0.000010
Benz(a)anthracene mg/	/L	-	-	< 0.000010	< 0.000010	<0.000010	< 0.000010	< 0.000010	< 0.000010
Benzo(a)pyrene mg/		0.00001	-	< 0.0000050	< 0.0000050	<0.000050	< 0.0000050	< 0.0000050	< 0.0000050
Chrysene mg/		0.0001	-	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	< 0.000010
Fluoranthene mg/		-	-	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Fluorene mg/		0.012	-	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
1-methylnaphthalene mg/		0.001	-	<0.000010	<0.000010 <0.000010	<0.000010 <0.000010	<0.000010 <0.000010	<0.000010 <0.000010	<0.000010 <0.000010
2-methylnaphthalene mg/ Naphthalene mg/		0.001	-	<0.000010 <0.000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Phenanthrene mg/		-	-	<0.000030	<0.000030	<0.000030	<0.000030	<0.000030	<0.000030
Pyrene mg/			-	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Quinoline mg/		-	-	<0.000050	<0.000050	<0.000010	<0.000050	<0.000010	<0.000050
Volatile Organic Compounds (VOCs)									
Benzene mg/		0.11	-	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Ethylbenzene mg/		0.25	-	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Methyl-tert-butyl-ether mg/) /L /L	5	0.44	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Styrene mg/) /L /L /L	-	-	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Toluene mg/) /L /L /L /L	0.215	-	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040
Total Xylenes mg/) /L /L /L /L /L	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Chlorobenzenemg/1,2-Dichlorobenzenemg/	/L /L /L /L /L /L /L /L /L	0.025	-	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050

Notes: Results <u>underlined in bold italics</u> exceed the applicable long-term water quality guideline for the protection of marine water aquatic life. Shaded results exceed the applicable short-term water quality guideline for the protection of marine water aquatic life. ¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs. ² New time wideline for the evaluation of change from background conditions arising from discharges to the aquatic environment. Salinit ² Narrative guideline for the evaluation of change from background conditions arising from discharges to the aquatic environment. Salinity WQG was not evaluated. The water quality data presented in the table were collected when the site was not discharging, therefore the turbidity and TSS WQGs were not evaluated.

³ The approved total ammonia nitrogen BC WQG is salinity, pH and temperature dependent; see Tables 26E and 26F in BC WQG guidance document. ⁴ The working BC WQG for trivalent antimony [SB(III)] is 0.27 mg/L and is applied to total antimony results.

⁵ When MeHg $\leq 0.5\%$ of total Hg, BC WQG = 0.00002 mg/L. The Canadian WQG = 0.000016 mg/L.

Table G-2: Summary of Marine Water Quality Results Received at the Time of Reporting

Parameter	Lowest Applicable Guideline ¹			0.5 m Below Surface WQR2-0.5 VA25B4487-	erence Station W 2 m Below Surface WQR2-2m VA25B4487-	2 m Above Seafloor WQR2-SF	
				007 2025-06-17	008 2025-06-17	VA25B4487- 009 2025-06-17	
		Long Term Short Ter		11:30	11:15	2025-06-17 11:00	
General Parameters		1	1				
pH - Field	pH units	7.0 - 8.7	-	7.36	7.94	7.63	
Specific Conductivity - Field	µS/cm	-	-	3058	9634	47002	
Temperature - Field	°C	- NT (* 2	-	12.7	13.2	10.1	
Salinity - Field	ppt NTU	Narrative ² Narrative ²	- Narrative ²	1.6 13.4	5.28 10.4	30.43	
Turbidity - Field TSS		Narrative ²	Narrative ² Narrative ²	5.4	<2.0	2.36 <2.0	
Dissolved Oxygen - Field	mg/L mg/L		Inarrative -	10.68	10.83	<2.0 <u>7.97</u>	
Anions and Nutrients	IIIg/L	>-0	-	10.08	10.85	<u>1.31</u>	
Sulphate	mg/L	_	_	107	1410	2110	
Chloride	mg/L	-	-	819	10400	15200	
Fluoride	mg/L	-	1.5	< 0.400	<2.00	<2.00	
Ammonia (N-NH3)	mg/L	3.1-14 ³	21-94 ³	< 0.0050	< 0.0050	0.0188	
Nitrite (N-NO ₂)	mg/L	-	-	< 0.0200	< 0.100	< 0.100	
Nitrate (N-NO ₃)	mg/L	3.7	339	< 0.100	< 0.500	< 0.500	
Total Metals							
Aluminum, total (T-Al)	mg/L	-	-	0.431	0.467	0.0275	
Antimony, total (T-Sb)	mg/L	-	0.27 4	< 0.0010	< 0.0010	< 0.0010	
Arsenic, total (T-As)	mg/L	0.0125	0.0125	< 0.00040	<0.00040	0.00156	
Barium, total (T-Ba)	mg/L	-	-	0.0136	0.014	0.0103	
Beryllium, total (T-Be)	mg/L	0.1	-	<0.00050	<0.00050	<0.00050	
Boron, total (T-B)	mg/L	1.2	-	<0.30	0.32	<u>3.46</u>	
Cadmium, total (T-Cd)	mg/L	0.00012	-	<0.000020	<0.000020	0.000065	
Chromium, total (T-Cr)	mg/L	-	-	< 0.00050	<0.00050	< 0.00050	
Cobalt, total (T-Co)	mg/L	-	-	0.000181	0.000201	0.000084	
Copper, total (T-Cu)	mg/L	0.002	0.003	0.00122	<u>0.00404</u>	0.0006	
Iron, total (T-Fe) Lead, total (T-Pb)	mg/L	- 0.002	- 0.14	0.35	0.369 <0.00010	0.02	
Manganese, total (T-Mn)	mg/L mg/L	0.002	-	0.0138	0.0143	0.0027	
Mercury, total (T-Hg)	mg/L mg/L	0.000016 5	-	<0.000050	<0.000050	<0.0000050	
Molybdenum, total (T-Mo)	mg/L mg/L	0.000010	-	0.00087	0.001	0.00923	
Nickel, total (T-Ni)	mg/L mg/L	0.0083		< 0.00050	<0.0001	< 0.00050	
Selenium, total (T-Se)	mg/L	0.002	_	< 0.00050	< 0.00050	< 0.00050	
Silver, total (T-Ag)	mg/L	0.0005	0.0037	< 0.00010	<0.00010	<0.00010	
Thallium, total (T-Tl)	mg/L	-	-	< 0.000050	< 0.000050	< 0.000050	
Uranium, total (T-U)	mg/L	-	-	0.000176	0.000234	0.00255	
Vanadium, total (T-V)	mg/L	0.005	-	0.00118	0.00125	0.00147	
Zinc, total (T-Zn)	mg/L	0.01	0.055	< 0.0030	< 0.0030	< 0.0030	
Hexavalent Chromium, total	mg/L	0.0015	-	< 0.00150	< 0.00150	< 0.00150	
Dissolved Metals							
Cadmium, dissolved (D-Cd)	mg/L	-	-	0.000021	< 0.000020	0.000073	
Copper, dissolved (D-Cu)	mg/L	-	-	< 0.00050	0.00052	0.00058	
Iron, dissolved (D-Fe)	mg/L	-	-	< 0.010	0.012	<0.010	
Lead, dissolved (D-Pb)	mg/L	-	-	< 0.00010	<0.00010	<0.00010	
Manganese, dissolved (D-Mn)	mg/L	-	-	0.00451	0.00464	0.00326	
Nickel, dissolved (D-Ni)	mg/L	-	-	<0.00050	<0.00050	0.00056	
Strontium, dissolved (D-Sr) Vanadium, dissolved (D-V)	mg/L mg/I	-	-	0.345	0.548 <0.00050	6.08	
Vanadium, dissolved (D-V) Zinc, dissolved (D-Zn)	mg/L mg/L	-	-	<0.00050	<0.00050	0.00135	
Polycyclic Aromatic Hydrocar)	-	<0.0010	<u>\0.0010</u>	<0.0010	
Acenaphthene	mg/L	0.006	_	< 0.000010	<0.000010	<0.000010	
Acridine	mg/L mg/L	-	-	<0.000010	<0.000010	<0.000010	
Anthracene	mg/L mg/L		-	<0.000010	<0.000010	<0.000010	
Benz(a)anthracene	mg/L	-	-	<0.000010	<0.000010	< 0.000010	
Benzo(a)pyrene	mg/L	0.00001	-	<0.0000050	<0.0000050	<0.0000050	
Chrysene	mg/L	0.0001	-	<0.000010	< 0.000010	<0.000010	
Fluoranthene	mg/L	-	-	< 0.000010	< 0.000010	< 0.000010	
Fluorene	mg/L	0.012	-	< 0.000010	< 0.000010	< 0.000010	
1-methylnaphthalene	mg/L	0.001	-	0.000012	< 0.000010	< 0.000010	
2-methylnaphthalene	mg/L	0.001	-	0.000021	0.000016	< 0.000010	
Naphthalene	mg/L	0.001	-	< 0.000050	< 0.000050	< 0.000050	
Phenanthrene	mg/L	-	-	< 0.000020	<0.000020	<0.000020	
Pyrene	mg/L	-	-	<0.000010	<0.000010	<0.000010	
Quinoline	mg/L	-	-	< 0.000050	<0.000050	< 0.000050	
Volatile Organic Compounds		0.11		.0.00050	.0.00050	.0.00050	
Benzene	mg/L	0.11	-	<0.00050	<0.00050	<0.00050	
Ethylbenzene	mg/L	0.25	-	<0.00050	<0.00050	<0.00050	
Methyl-tert-butyl-ether	mg/L	5	0.44	<0.00050	<0.00050	<0.00050	
Styrene Toluene	mg/L mg/I	- 0.215	-	<0.00050	<0.00050	<0.00050	
Total Xylenes	mg/L mg/L	0.215	-	<0.00040 <0.00050	<0.00040 <0.00050	<0.00040 <0.00050	
Chlorobenzene	mg/L mg/L	0.025		<0.00050	<0.00050	<0.00050	
CHURCHZEHE	IIIg/L	0.023	-	<0.00030	<0.00030	<0.00050	

Notes: Results <u>underlined in bold italics</u> exceed the applicable long-term water quality guideline for the protection of marine water aquatic life. Shaded results exceed the applicable short-term water quality guideline for the protection of marine water aquatic life. ¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs. ² Narrative guideline for the evaluation of change from background conditions arising from discharges to the aquatic environment. Salinity WQG was not evaluated. The water quality data presented in the table are marine reference stations and represent background conditions, therefore the turbidity and TSS WQGs were not evaluated.
 ³ The approved total ammonia nitrogen BC WQG is salinity, pH and temperature dependent; see Tables 26E and 26F in BC WQG guidance document.
 ⁴ The working BC WQG for trivalent antimony [SB(III)] is 0.27 mg/L and is applied to total antimony results.

⁵ When MeHg $\leq 0.5\%$ of total Hg, BC WQG = 0.00002 mg/L. The Canadian WQG = 0.000016 mg/L.

Table G-3: Summary of Marine Water Quality Results Received at the Time of Reporting

					Station IDZ-E1		Station IDZ-E2			
Donometer		Lowest Applicable Guideline ¹		0.5 m Below	2 m Below	2 m Above	0.5 m Below	2 m Below	2 m Above	
				Surface	Surface	Seafloor	Surface	Surface	Seafloor	
	Unit			IDZ-E1-0.5	IDZ-E1-2m	IDZ-E1-SF	IDZ-E2-0.5	IDZ-E2-2m	IDZ-E2-SF	
Parameter	Umt			VA25B4665-	VA25B4665-	VA25B4665-	VA25B4665-	VA25B4665-	VA25B4665-	
				001	002	003	004	005	006	
		Long Term	Short Term	2025-06-18	2025-06-18	2025-06-18	2025-06-18	2025-06-18	2025-06-18	
				11:45	11:50	11:55	11:30	11:35	11:40	
General Parameters										
pH - Field	pH units	7.0 - 8.7	-	7.85	8.04	7.58	8.13	8.08	7.72	
Specific Conductivity - Field	µS/cm	-	-	2954	16347	47643	1721	18130	45374	
Temperature - Field	°C	-	-	12.5	12.7	9.8	12.8	13.2	11.4	
Salinity - Field	ppt	Narrative ²	-	1.55	9.62	30.82	0.88	10.76	29.29	
Turbidity - Field	NTU	Narrative ²	Narrative ²	12.20	10.67	2.18	13.28	9.36	2.49	
TSS	mg/L	Narrative ²	Narrative ²	6.5	5.1	<2.0	6.6	2.8	<2.0	
Dissolved Oxygen - Field	mg/L	>=8	-	10.50	10.63	<u>7.30</u>	10.40	10.51	9.19	

Notes:

Results <u>underlined in bold italics</u> exceed the applicable long-term water quality guideline for the protection of marine water aquatic life. Shaded results exceed the applicable short-term water quality guideline for the protection of marine water aquatic life. ¹ The lowest applicable guidelines from approved or working BC WQGs, Canadian (CCME) WQGs and Federal WQGs. ² Narrative guideline for the evaluation of change from background conditions arising from discharges to the aquatic environment. Salinity WQG was not evaluated. The water quality data presented in the table were collected when the site was not discharging, therefore the turbidity and TSS WQGs were not evaluated.