Woodfibre LNG Air Quality Monitoring Station Report for February 2025

April 3, 2025

Prepared for: Woodfibre LNG General Partner Inc.

> Prepared by: Stantec Consulting Ltd.

> > Project/File: 123222160

Limitations and Sign-off

This document entitled Woodfibre LNG Air Quality Monitoring Station Report for February 2025 was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Woodfibre LNG General Partner Inc. (the "Client") to support the Floatel Air Quality Monitoring and Mitigation Plan Rev. 6, July 5, 2024 for the Woodfibre LNG Project (the "Project"). In connection therewith, this document may be reviewed and used by the British Columbia Environmental Assessment Office (BC EAO) participating in the review process in the normal course of its duties. Except as set forth in the previous sentence, any reliance on this document by any other party or use of it for any other purpose is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The information and conclusions in the document are based on the conditions existing at the time the document was published and does not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by the Client or others, unless expressly stated otherwise in the document. Any use which another party makes of this document is the responsibility and risk of such party. Such party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other party as a result of decisions made or actions taken based on this document.

Prepared by:

Signature

Dr. Kashif Choudhry, P.Eng. (BC, ON, and SK), Senior Atmospheric Engineer Printed Name

Reviewed by:

Signature

Approved by:

Signature

Dan Jarratt, EP, P.Eng. (AB, BC), Air Quality Technical Area Leader Canada Printed Name

Adriana MacLeod, B.Sc. Printed Name

Executive Summary

This report provides a summary of the ambient air quality monitoring data for February 2025 that has been collected in fulfilment of the requirements established in the Floatel Air Quality Management and Monitoring Plan (Rev 6, July 5, 2024) (Woodfibre LNG 2024). Table E.1 below presents the monthly averages, ranges, and maximum values for key air contaminant concentrations measured during February 2025, along with additional information on any air quality exceedances and complaints received during this period. This report provides an overview of ambient air quality conditions and any regulatory compliance actions taken during February 2025.

Air Contaminant		Units	Monthly Average	Monthly Range (Min - Max)	
PM _{2.5} (24-hour average)		µg/m³	5.7	3.0 - 9.5	
PM ₁₀ (24-hour average)		µg/m³	16.2	8.5 - 53.0	
TSP (24-hour average) ^a		µg/m³	26.2	15.1 - 48.5	
NO ₂ (24-hour average)		ppb	8.6	1.0 - 19.5	
NO ₂ (1-hour average)		ppb	8.5	0.0 - 37.5	
SO ₂ Feb 7, 2025 –		•		<0.2 ^b	
VOC as Hexane	Mar 3, 2025	ppb		<0.7 ^b	
Number of Air Quality Exceedances Recorded			1		
Number of Complaints Received			None		

Table E.1 February 2025 Air Quality Monitoring Station Summary

Notes:

^a TSP monthly average concentration and range are based on valid measurements collected between February 1 and February 10, 2025.

^b Concentrations below the Reported Detection Limit (RDL) are indicated with a '<' symbol.

Table of Contents

Lir	nita	ations and Sign-off	i
Ex	ecu	itive Summaryi	i
Ac	ron	nyms / Abbreviations	1
1	In	ntroduction	i
2	Ke	ey Components Assessed	3
2	2.1	Meteorology	3
:	2.2	Air Contaminants of Interest	3
	2.:	.2.1 Continuous Sampling	3
	2.:	.2.2 Passive Sampling	3
2	2.3	Air Quality Criteria	ŧ
3	In	nstrument Summary	ò
	3.1	Continuous Monitoring of PM and NO ₂	7
	3.2	Passive Monitoring of SO ₂ and VOC	7
4	Ar	mbient Air Quality Monitoring Results	3
	4.1	Continuous Monitoring of PM and NO ₂	3
4	4.2	Passive Monitoring of SO ₂ and VOC10)
4	4.3	Meteorology10)
5	Sı	ummary of Ambient Air Quality Monitoring Results1	I
6	Re	eferences12	2

List of Tables

Table 2.1	Parameters Measured at the Woodfibre LNG Site Meteorology Station	3
Table 2.2	Summary of 2020 and 2025 Canadian Ambient Air Quality Standards for the Contaminants of Potential Concern	4
Table 2.3	British Columbia Ambient Air Quality Objectives	5
Table 3.1	Summary of Instrumentation used at the Woodfibre LNG Air Quality Monitoring Station	6

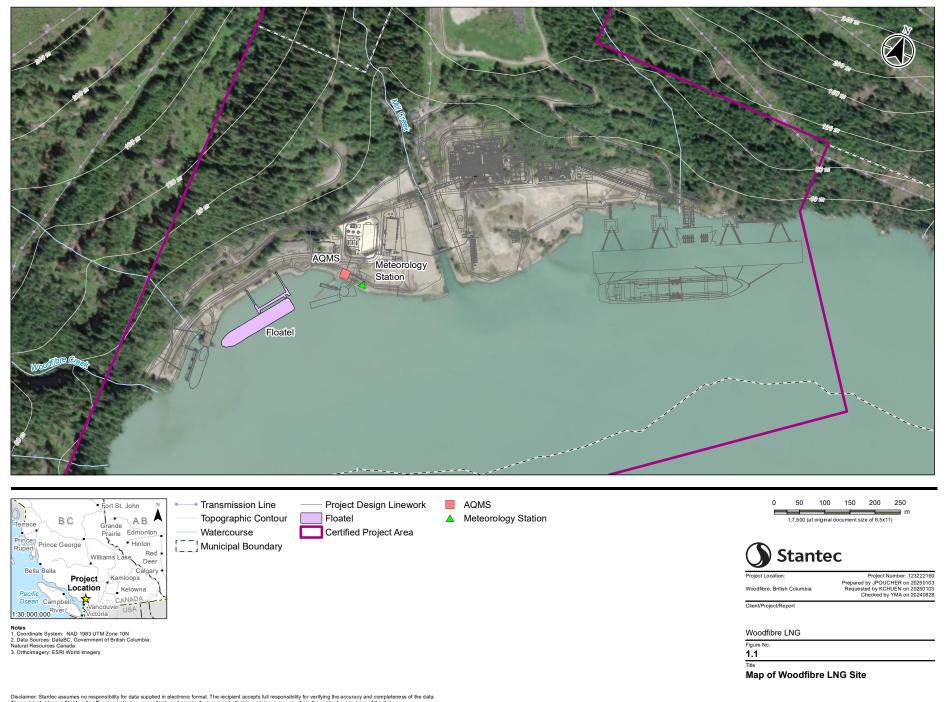
List of Figures

Figure 1.1 Map of the Woodfibre LNG Site
--

List of Appendices

- Appendix A Figures
- Appendix B Data Tables
- Appendix C Station Calibration and Maintenance Record
- Appendix D Air Quality Exceedance Report
- Appendix E Weekly AQMS Reports
- Appendix F Passive SO2 and VOC Samples Lab Analysis Report

Acronyms / Abbreviations


AGAT	AGAT Laboratories
AQMS	Air Quality Monitoring Station
AQO	British Columbia Air Quality Objective(s)
BC	British Columbia
BC ENV	British Columbia Ministry of Environment and Climate Change Strategy (2017–2024)
BC ENVP	British Columbia Ministry of Environment and Parks (2024–Present)
CAAQS	Canadian Ambient Air Quality Standard(s)
CCME	Canadian Council of Ministers of the Environment
EAO	British Columbia Environmental Assessment Office
Floatel	The marine-based work camp, associated facilities and mooring infrastructure dedicated to house approximately 650 Workers during the Construction and Operations of the Project
FAQMMP	Floatel Air Quality Monitoring and Mitigation Plan
FEM	Federal Equivalent Method
NO ₂	Nitrogen Dioxide
PM	Particulate Matter
PM _{2.5}	Fine Particulate Matter (less than 2.5 microns (µm) in aerodynamic diameter)
PM ₁₀	Particulate Matter (less than 10 microns (μm) in aerodynamic diameter)
QA/QC	Quality Assurance and Quality Control
SO ₂	Sulphur Dioxide
TSP	Total Suspended Particulate
UPS	Uninterruptable Power Supply
US EPA	United States Environmental Protection Agency
VOC	Volatile Organic Compounds
Woodfibre LNG	Woodfibre LNG General Partner Inc.

1 Introduction

Woodfibre LNG General Partner Inc. (Woodfibre LNG) is developing the Woodfibre Liquefied Natural Gas Project (the Project) at the former Woodfibre Pulp Mill site, approximately seven kilometres southwest of Skwxwú7mesh (Squamish), British Columbia (BC). To support onsite ambient air quality monitoring, Stantec Consulting Ltd. ("Stantec") prepared the Floatel Air Quality Monitoring and Mitigation Plan (FAQMMP; Rev 6, July 5, 2024) on behalf of Woodfibre LNG (Woodfibre LNG 2024). The FAQMMP was developed to comply with Condition 30 of the Environmental Assessment Office (EAO) Amendment #3 (EAO 2023), which pertains specifically to Floatel air guality monitoring. The monitoring is intended to demonstrate compliance with ambient air quality standards and assists Woodfibre LNG in determining whether mitigation during the Project's construction phase is required. Further details regarding the purpose, duration, and compliance framework are available in the FAQMMP Rev 6 July 5, 2024 (Woodfibre LNG 2024). The air quality monitoring station (AQMS) continuously measures PM_{2.5}, PM₁₀, TSP, and NO₂ concentrations, along with passive sampling and analysis for SO₂ and VOCs. Data processing, guality assurance, and guality control (QA/QC) of the air guality monitoring equipment are performed, and the data presented in this monthly report is based on a Level 0 data validation as described by the British Columbia Field Sampling Manual - Part B (BC ENVP 2020, formerly British Columbia Ministry of Environment & Climate Change Strategy (BC ENV, 2017-2024); now Ministry of Environment & Parks (BC ENVP), 2024-present).

The location of the AQMS (UTM Easting 481,569 m and Northing 5,501,374 m, NAD83 datum, zone 10U) is adjacent to the existing meteorology station (UTM Easting 481,610 m and Northing 5,501,369 m, NAD83 datum, zone 10U) currently in operation at the Woodfibre LNG site as recommended in the FAQMMP. Figure 1.1 provides a map of the Woodfibre LNG site. This February 2025 monthly air quality report provides data on air quality and meteorology conditions monitored at the Woodfibre LNG Project site close to the Floatel. The monitoring and reporting support regulatory compliance. These monthly reports track ambient air quality trends, address potential issues, and help the Project meet project-specific and regulatory requirements.

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

2 Key Components Assessed

Two key sets of measurements are reported: a) meteorology data, including ambient temperature, wind speed and direction, and total rainfall, and b) ambient concentrations of air contaminants measured at the AQMS.

2.1 Meteorology

Meteorology data supporting the Woodfibre LNG AQMS are acquired from the nearby Woodfibre LNG meteorology station. This meteorology data supports the long-term ambient air quality monitoring collected at the site. The meteorology variables measured at the station are listed in Table 2.1. While the table includes all measured parameters, this report explicitly presents data for wind, air temperature, and rainfall only, excluding pressure and relative humidity.

Parameter	Units
Wind Speed	m/s
Wind Direction	Degrees
Air Temperature	°C
Rainfall	mm
Barometric Pressure	hPa
Relative Humidity	%

 Table 2.1
 Parameters Measured at the Woodfibre LNG Site Meteorology Station

2.2 Air Contaminants of Interest

The air contaminants being measured are described below according to the type of monitoring.

2.2.1 Continuous Sampling

- Particulate matter with aerodynamic diameter less than or equal to 2.5 microns (PM_{2.5})
- Particulate matter with aerodynamic diameter less than or equal to 10 microns (PM₁₀)
- Total suspended particulate (TSP)
- Nitrogen dioxide (NO₂)

2.2.2 Passive Sampling

- Sulphur dioxide (SO₂)
- Volatile organic compounds (VOCs)

2.3 Air Quality Criteria

The air contaminants monitored at the AQMS, along with their corresponding Canadian Ambient Air Quality Standards (CAAQS) (CCME 2024) and British Columbia Air Quality Objectives (BCAQO) (BC ENVP 2021) regulatory criteria, are presented in Table 2.2 and Table 2.3, respectively.

Substance	Averaging	Concentration	a		
	Period	(µg/m³) ^{b,c}		(ppbv) ^d	
		2020	2025	2020	2025
Nitrogen Dioxide (NO2)	1-hour ^e	113	79	60	42
	Annual ^f	32	23	17.0	12.0
Sulphur Dioxide (SO ₂)	1-hour ^g	183	170	70	65
	Annual ^h	13	10.4	5.0	4.0
Fine Particulate Matter (PM _{2.5})	24-hour ⁱ	27	j	—	_
	Annual ^k	8.8	j	_	_

Table 2.2Summary of 2020 and 2025 Canadian Ambient Air Quality Standards for the
Contaminants of Potential Concern

Notes:

^a Canadian Ambient Air Quality Standards (CCME 2024) for 2020 and 2025.

^b µg/m³ is the mass of the substance in micrograms per cubic meter of air.

^c Standard conditions of 25°C and 101.325 kPa are used to convert from µg/m³ to ppbv.

^d ppbv is the volume of the substance (parts) per billion volumes of air.

^e The 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentration.

^f The average over a single calendar year of all 1-hour average concentrations.

⁹ The 3-year average of the annual 99th percentile of the daily maximum 1-hour average concentrations.

^h The average over a single calendar year of all 1-hour average concentrations.

ⁱ The 3-year average of the annual 98th percentile of the daily 24-hour average concentrations.

^j Currently under review by the CCME

^k The 3-year average of the annual average of the daily 24-hour average concentrations.

Substance	Averaging Period	Air Quality Objective ^a		
		μg/m ^{3 b,c}	ppbv ^d	
Nitrogen Dioxide (NO2)	1-hour ^e	113	60	
	Annual ^f	32	17	
Sulphur Dioxide (SO ₂)	1-hour ^g	183	70	
	Annual ^h	13	5	
Fine Particulate Matter (PM _{2.5})	24-hour ⁱ	25	_	
	Annual ^j	8.0	—	
Coarse Particulate Matter (PM ₁₀)	24-hour	50	_	
Total Suspended Particulate (TSP)	24-hour	120	—	
	Annual ^k	60	—	

Table 2.3 British Columbia Ambient Air Quality Objectives

Notes:

^a British Columbia Air Quality Objectives (BC ENVP 2021).

- $^{b}\ \ \mu\text{g/m}^{3}$ is the mass of the substance in micrograms per cubic meter of air.
- ^c Standard conditions of 25°C and 101.325 kPa are used to convert from µg/m³ to ppbv.
- ^d ppbv is the volume of the substance (parts) per billion volumes of air.
- Achievement based on annual 98th percentile of daily 1-hour average maximum (D1HM), averaged over three consecutive years.
- ^f Achievement based on annual average of 1-hour average concentrations over one year.
- ^g Achievement based on annual 99th percentile of daily 1-hour average maximum (D1HM), averaged over three consecutive years.
- ^h Achievement based on annual average of 1-hour concentrations over one year.
- ⁱ Achievement based on annual 98th percentile of daily average, averaged over one year.
- ^j Achievement based on annual average, averaged over one year.
- ^k Based on geometric mean.

3 Instrument Summary

The AQMS is currently being operated to measure the ambient concentrations of the air contaminants mentioned above. A site visit took place between February 11 and 13, 2025. The following activities were undertaken during the site visit:

- Quarterly maintenance and calibration
- BAM TSP unit replacement, due to a malfunctioning display screen
- Uninterruptable power supply (UPS) installation to limit data loss due to power interruptions at the AQMS
- BAM PM_{2.5} sampling time changed from 42 minutes to 50 minutes. As a result, the instrument has been operating as a non-designated method for PM_{2.5} monitoring since February 11, 2025. The reason for this change is unknown.

Following the BAM TSP unit replacement, the AQMS initially occasionally recorded TSP concentrations that were lower than the $PM_{2.5}$ or PM_{10} values. As time progressed, it consistently recorded lower values. Because the TSP values are less than the PM_{10} and $PM_{2.5}$ values, the TSP data are invalid. TSP data collected after February 11, 2025, are excluded from this report. Although $PM_{2.5}$ data collected after February 11, 2025, were collected using a non-designated method, the BAM was operating without error. Therefore, the $PM_{2.5}$ data collected after February 11, 2025, are valid and are included in this report.

A site visit is planned for March 25 to March 28 to replace the malfunctioning TSP unit with the spare BAM TSP unit and to adjust the BAM PM_{2.5} sampling time from 50 minutes to 42 minutes to meet the US EPA FEM requirements for PM_{2.5} monitoring (BC ENVP 2020, US EPA 2024, and Met One Instruments 2024).

The passive sampling of SO₂ and VOCs uses AGAT's Passive Sampler system. The Woodfibre LNG personnel exchange the monthly samples and submit them to AGAT for laboratory analysis.

Table 3.1Summary of Instrumentation used at the Woodfibre LNG Air Quality Monitoring
Station

Parameter	Instrumentation		
PM _{2.5} , PM ₁₀ , and TSP	Met One Instruments BAM 1020 Beta Attenuation Mass Monitors		
NO ₂	Thermo Fisher Scientific – Model 42i (NO-NO ₂ -NO _x) Analyzer		
SO ₂ and total VOCs	AGAT's Passive Sampler system		

3.1 Continuous Monitoring of PM and NO₂

Particulate matter (PM_{2.5}, PM₁₀, and TSP) was continuously monitored following the Standard Operating Procedure for the Continuous Measurements of Ambient PM Using a Beta Attenuation Monitor (Reference No: SOP-05a). The NO₂ concentrations were continuously monitored following the Standard Operating Procedure for the Continuous Measurement of Ambient NOx (Reference No: SOP-03) in Part B1 of the British Columbia Field Sampling Manual (BC ENVP 2020).

3.2 Passive Monitoring of SO₂ and VOC

The SO₂ and VOC ambient concentrations were monitored following the Standard Operating Procedure for the Passive/Diffusive Method of Air Sample Collection (Reference No: SOP-07) in Part B1 of the British Columbia Field Sampling Manual (BC ENVP 2020).

4 Ambient Air Quality Monitoring Results

The measured data presented for passive and continuous monitoring includes a) ambient air quality data collected at the AQMS (Appendix A), and b) meteorology data acquired from the Woodfibre LNG meteorology station. The daily air quality and meteorology data are included in Appendix B, Table B.1 and Table B.2.

4.1 Continuous Monitoring of PM and NO₂

A summary of the hourly ambient air monitoring results for PM_{2.5}, PM₁₀, TSP, and NO₂ for February 2025 is presented in Appendix A, Figure A.1 to Figure A.5, along with the corresponding regulatory criteria and comparisons with Langdale Elementary (BC ENVP 2024a) and Squamish Elementary (BC ENVP 2024b) regional ambient air quality monitoring stations. Langdale Elementary and Squamish Elementary were selected as reference points due to their relative proximity to the Woodfibre LNG construction site and the availability of relevant ambient air quality data. BC ENVP air quality monitoring station at Langdale Elementary provides measurements for PM_{2.5}, PM₁₀, NO₂, and SO₂, while Squamish Elementary monitors PM_{2.5}, NO₂, and SO₂. There are no BC ENVP ambient air quality monitoring stations near the Woodfibre LNG project site that measure TSP and VOCs. The hourly air quality objective threshold for NO₂ is based on the 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentration (CCME 2024; BC ENVP 2021).

During February 2025, the hourly $PM_{2.5}$ concentrations ranged from 0¹ to 23 µg/m³, the hourly PM_{10} concentrations ranged from 3 to 235 µg/m³, the hourly TSP concentrations ranged from 8 to 236 µg/m³ (based on sampling between February 1 and February 11, before the TSP unit was replaced), and the hourly NO₂ concentrations ranged from 0² to 37.5 ppb. The hourly results for the NO₂ concentration monitoring during this period were less than the BCAQO threshold value of 60 ppb.

Similarly, a summary of the daily (24-hour average) ambient air quality monitoring results for PM_{2.5}, PM₁₀, TSP, and NO₂ for February 2025 is presented in Table E.1 and Figure A.6 to Figure A.10 (Appendix A), with corresponding regulatory criteria and comparisons with Langdale Elementary and Squamish Elementary regional air quality monitoring stations. The AQMS's gas analyzer units could not collect 24-hour average valid data on February 12, 2025, due to quarterly maintenance and calibration (Appendix C).

² The 42i NO-NO₂-NOx gas analyzer recording the NO₂ concentrations may occasionally report slightly negative values when the are very low. Both the BCFSM (BC ENVP 2020) and the National Air Pollution Surveillance (NAPS, CCME 2019) program provide data validation criteria for gas concentration measurements: values between -3 and 0 ppb are adjusted to 0, while values below -3 ppb are further investigated prior to setting to zero. This approach has been consistently applied in the data validation program.

¹ The BAM 1020 instrument recording the PM_{2.5} concentrations may occasionally report slightly negative values when the are very low (Met One Instruments 2024). Therefore, both the BCFSM (BC ENVP 2020) and the National Air Pollution Surveillance (NAPS, CCME 2019) program provide data validation criteria for PM_{2.5} measurements: values between -3 and 0 µg/m³ are adjusted to 0, while values below - 3 µg/m³ are flagged as invalid. This approach has been followed for PM_{2.5} data validation program.

The 24-hour regulatory standards for PM_{10} and TSP monitoring are 50 µg/m³ and 120 µg/m³, respectively. The 24-hour BCAQO threshold value for $PM_{2.5}$ is 25 µg/m³, based on the 3-year average of the annual 98th percentile of the daily 24-hour average concentrations (CCME 2024; BC ENVP 2021).

During February 2025, the 24-hour average $PM_{2.5}$ concentrations of ranged from 3.0 to 9.5 µg/m³, 24-hour average PM_{10} concentrations of ranged from 8.5 to 53.0 µg/m³, 24-hour average TSP concentrations ranged from 15.1 to 48.5 µg/m³ (based on valid data collected between February 1 and February 10, before the TSP unit was replaced on February 11; the data collected on February 11 was excluded due to less than 75% data completeness), and 24-hour average NO₂ concentrations of ranged from 1.0 to 19.5 ppb.

The 24-hour average PM_{2.5}, PM₁₀ and NO₂ concentrations recorded at the Woodfibre LNG AQMS site were generally higher than those observed at the Langdale Elementary and Squamish Elementary regional air quality monitoring stations, which is expected given the proximity of the AQMS site to active construction activities. However, the measured NO₂ concentrations were similar or lower than those at the regional air quality monitoring stations between February 7 and February 11, 2025, indicating minimal impact from the site-specific emissions on the ambient NO₂ concentrations measured at the AQMS.

The available data for February 2025 is insufficient to compare with the annual thresholds set for NO_2 , $PM_{2.5}$, and TSP by BCAQO and CAAQS. However, the monthly average NO_2 concentration in February 2025 is 8.6 ppb. The combined average for January and February 2025 is 7.7 ppb, less than the BCAQO and CAAQS annual threshold of 17 ppb and 12 ppb, respectively.

The February 2025 monthly average $PM_{2.5}$ concentration is 5.7 µg/m³. The combined average for January and February 2025 is 5.9 µg/m³ is less than the BCAQO and CAAQS annual threshold values of 8.0 and 8.8 µg/m³, respectively. However, this two-month average does not represent a yearly valid average for comparison with these thresholds due to the limited duration of monitoring data. Similarly, the February monthly average TSP concentration is 26.2 µg/m³ (based on valid data collected between February 1 and February 10, before the TSP unit was replaced). The combined average TSP concentration for January and February 2025 is 28.9 µg/m³, below the BCAQO annual threshold of 60 µg/m³.

A summary of the 24-hour average $PM_{2.5}$, PM_{10} , TSP and NO_2 concentrations measured during February 2025 is presented in Appendix B, Table B.1. The results for $PM_{2.5}$ and TSP were less than the BCAQO threshold values of 25 µg/m³ and 120 µg/m³, respectively, and no air quality exceedances were recorded for these contaminants. However, one air quality exceedance for PM_{10} was recorded on February 20, 2025, with a measured 24-hour average concentration of 53.0 µg/m³, which is greater than the BCAQO threshold value of 50 µg/m³ for PM_{10} . It was concluded, based on air quality and meteorology data investigations, that PM_{10} exceedance is primarily attributable to construction project-related sources (see further details in the Air Quality Exceedance Report, Appendix D). Additionally, no complaints were received from the Floatel residents during February 2025 that required further investigation or mitigation actions. The weekly AQMS reports are presented in Appendix E.

4.2 Passive Monitoring of SO₂ and VOC

The passive sample media for SO_2 and total VOCs were swapped on March 3, 2025. This report includes the results for samples collected for the exposure period from February 7, 2025, to March 3, 2025. The laboratory analysis reports are presented in Appendix F.

The results for SO_2 and VOC samples collected between February 7, 2025, and March 3, 2025, show an ambient average SO_2 concentration of <0.2 ppb and an ambient average VOC concentration of <0.7 ppb. The instrument-reported detection limits (RDL) are 0.2 ppb and 0.7 ppb, respectively. In comparison, the regional monitoring stations reported higher ambient SO_2 concentrations in February 2025, with Squamish Elementary recording 0.8 ppb and Langdale Elementary recording 0.7 ppb. The measured SO_2 concentration at the AQMS remained below 0.2 ppb, meaning it was lower than the levels recorded at Squamish Elementary and Langdale Elementary regional air quality stations.

4.3 Meteorology

A summary of the meteorology conditions during February 2025 is presented in Appendix B, Table B.2. Daily average and maximum wind speeds are shown in Figure A.11. The highest hourly average wind speed was recorded on February 23, 2025, at 19:00 (13.9 m/s), and the highest 24-hour average wind speed occurred on February 3 (3.5 m/s). Figure A.12 presents a wind rose illustrating wind direction and speed for February 2025 at the Woodfibre LNG meteorology station. The prevailing wind direction is from the northwest. Additionally, Figure A.13 includes four wind roses capturing specific time intervals: between 0:00 and 8:00 hours, 9:00 and 12:00 hours, 13:00 and 19:00 hours, and 20:00 and 00:00 hours throughout February 2025.

The daily ambient temperature data is presented in Figure A.14. The maximum hourly air temperature of 15.1°C was recorded on February 28, 2025, at 13:00 and 14:00, while the minimum hourly temperature of -7.5°C occurred on February 5, 2025, at 07:00. The monthly average temperature for February 2025 was 1.9°C

The daily and total monthly rainfall data, presented in Figure A.15 and Appendix B, Table B.2, show that the highest single-day rainfall of 53.2 mm occurred on February 22, 2025. The total rainfall for February 2025 was 218.6 mm.

5 Summary of Ambient Air Quality Monitoring Results

The ambient air quality monitoring results for February 2025 indicate that the PM_{2.5}, and TSP concentrations remained less than the BC Air Quality Objective threshold values, with one exceedance recorded for PM₁₀ on February 20, 2025. This exceedance was primarily attributable to construction project-related sources (Air Quality Exceedance Report; Appendix D). The measured NO₂ concentrations were less than the regulatory limits. The meteorology data, including wind speed, temperature, and rainfall, support accurate interpretation of the ambient air quality monitoring trends. No complaints from the Floatel residents were received that required further investigation or a mitigation plan during February 2025.

6 References

- BC ENVP. 2020. The British Columbia Field Sampling Manual: Part B: Air and Air Emissions Testing. Retrieved March 18, 2025, from Government of British Columbia: Ministry of Environment and Climate Change Strategy (BC ENV, 2017-2024); now Ministry of Environment & Parks (BC ENVP, 2024–present); Environmental Protection & Sustainability; Research, Monitoring and Reporting; Monitoring; B.C. Field Sampling Manual Web Site: <u>https://www2.gov.bc.ca/assets/gov/environment/research-monitoring-andreporting/monitoring/emre/manuals/field-sampling-manual/bc_field_sampling_manual_part_b.pdf</u>
- BC ENVP. 2021. British Columbia Ambient Air Quality Objectives. Retrieved March 18, 2025, from Government of British Columbia; Environment and Climate Change Strategy (BC ENV, 2017-2024); now Ministry of Environment & Parks (BC ENVP, 2024–present); Environmental Protection and Sustainability; Air, Land, and Water; Air; Air Quality Management; Regulatory Framework, Objectives and Standards Web Page: <u>https://www2.gov.bc.ca/gov/content/environment/air-landwater/air/air-quality-management/regulatory-framework/objectives-standards</u> and <u>https://www2.gov.bc.ca/assets/gov/environment/air-land-water/air/reportspub/prov_air_qual_objectives_fact_sheet.pdf</u>
- BC ENVP. 2024a. Langdale Elementary British Columbia Ambient Air Data Archive Website. Retrieved March 18, 2025; <u>https://envistaweb.env.gov.bc.ca/StationReportFast.aspx?ST_ID=86</u>
- BC ENVP. 2024b. Squamish Elementary British Columbia Ambient Air Data Archive Website. Retrieved March 18, 2025; <u>https://envistaweb.env.gov.bc.ca/StationReportFast.aspx?ST_ID=491</u>
- CCME. 2019. NAPS Ambient Air monitoring and Quality Assurance and control Guidlines. National Air Pollution Surveillance Program (NAPS), Canadian Council of Ministers of the Environment (CCME); Retrieved March 18, 2025, <u>https://ccme.ca/en/res/ambientairmonitoringandqaqcguidelines_ensecure.pdf</u>.
- CCME. 2024. Canadian Ambient Air Quality Standards (CAAQS). Retrieved March 18, 2025, from Canadian Council of Ministers of the Environment (CCME); Canada's Air Web Site: <u>https://ccme.ca/en/air-quality-report#slide-7</u>
- EAO. 2023. Amendment #3 for the Woodfibre LNG Project (Project) Environmental Assessment Certificate #E15-02. Victoria, British Columbia: British Columbia Environmental Assessment Office (EAO).
- Met One Instruments. 2024. BAM 1020 Operation Manual. Met One instruments, Inc. Grants Pass, Oregon, United States. <u>https://metone.com/wp-content/uploads/2024/02/BAM-1020-9805-</u> <u>Manual-Rev-G-Reduced.pdf</u>.

- Woodfibre LNG. 2024. Floatel Air Quality Monitoring and Mitigation Plan Environmental Management Plan, Woodfibre LNG Project: Rev 6 (July 5, 2024). Vancouver, British Columbia: Woodfibre LNG General Partner Inc. (Woodfibre LNG).
- US EPA. 2024. List of Designated Reference and Equivalent Methods, Issue date June 15, 2024. Retrieved March 26, 2025, https://www.epa.gov/system/files/documents/2024-12/amtic-list-december-2024_final.pdf.

Appendices

Appendix A Figures

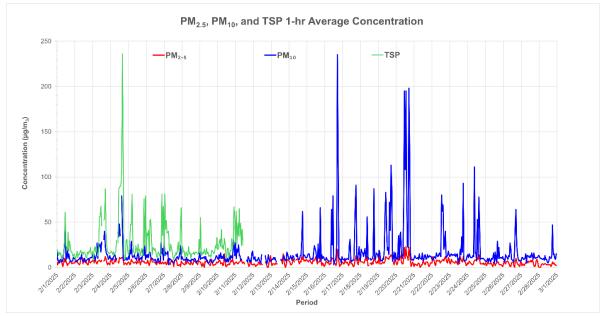
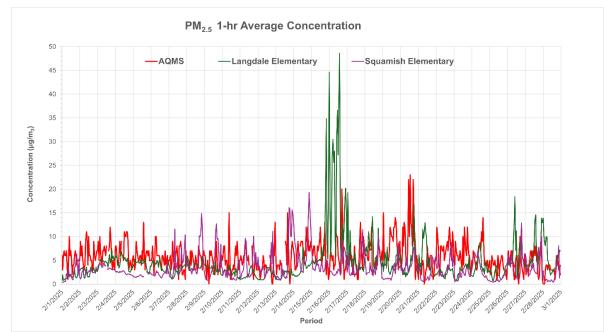
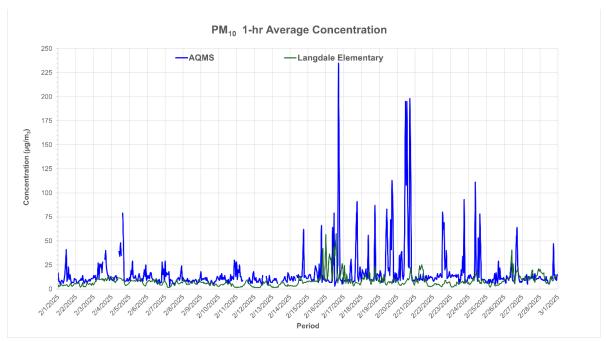
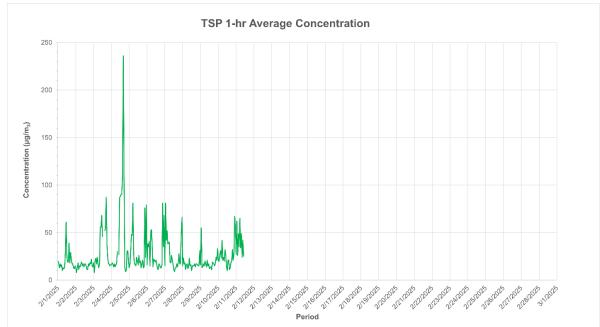
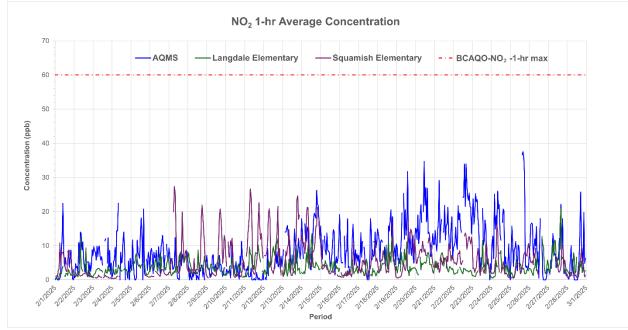



Figure A.1 Hourly PM Concentrations Recorded at the AQMS during February 2025

Note: Missing hourly data for $PM_{2.5}$ and PM_{10} due to the instrument's quarterly maintenance and calibration between February 11 and February 13, 2025. TSP data collected following TSP analyzer replacement on February 11, 2025 is invalid and is excluded from this report.

Note: Missing hourly data for PM_{2.5} (AQMS) due to the instrument's quarterly maintenance and calibration between February 11 and February 13, 2025.

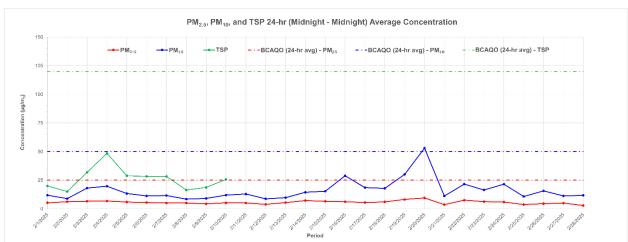
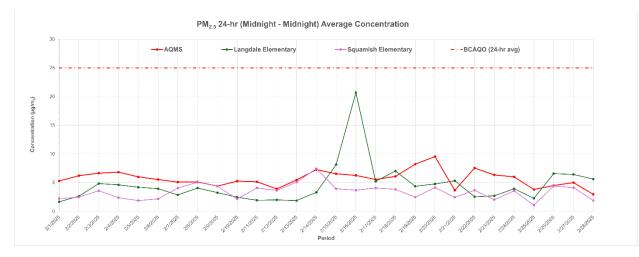

Figure A.3 Hourly PM₁₀ Concentrations Recorded at the AQMS, and the Langdale Regional Air Quality Station during February 2025

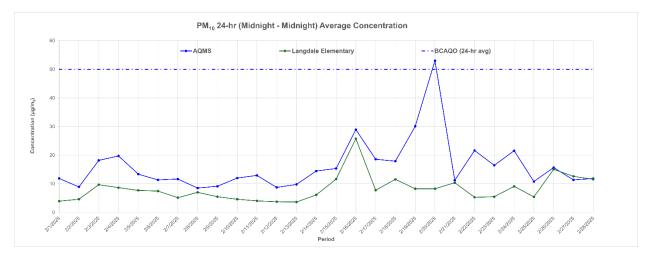
Note: Missing hourly data for PM₁₀ (AQMS) due to the instrument's quarterly maintenance and calibration between February 11 and February 13, 2025.

Note: TSP data collected following TSP analyzer replacement on February 11, 2025 is invalid and is excluded from this report.

Figure A.5 Hourly NO₂ Concentrations Recorded at the AQMS, and the Langdale and Squamish Regional Air Quality Stations during February 2025

Note: Missing hourly data for NO₂ (AQMS) due to the instrument's quarterly maintenance and calibration on February 12, 2025.

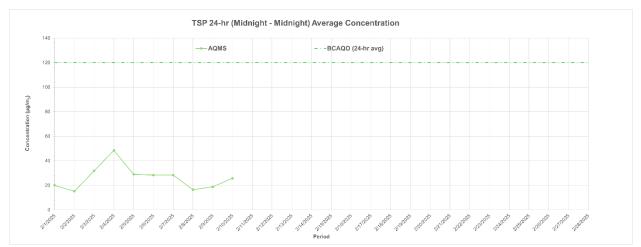




Figure A.624-Hour Average PM Concentrations Recorded at the AQMS during February 2025

Note: TSP data collected following TSP analyzer replacement on February 11, 2025 is invalid and is excluded from this report.

Figure A.724-Hour Average PM2.5 Concentrations Recorded at the AQMS, and the
Langdale and Squamish Regional Air Quality Stations during February 2025

Figure A.824-Hour Average PM10 Concentrations Recorded at the AQMS, and the
Langdale Regional Air Quality Station during February 2025



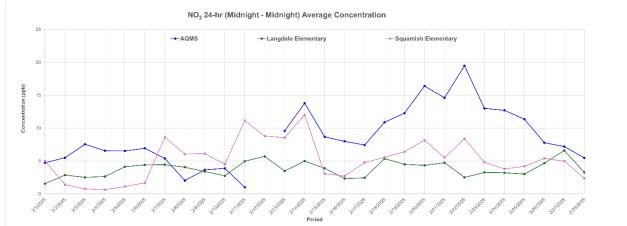
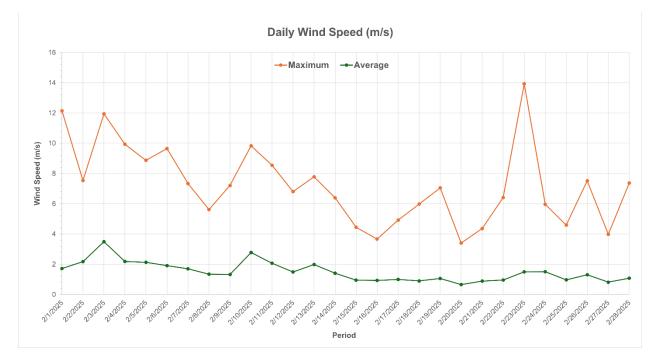
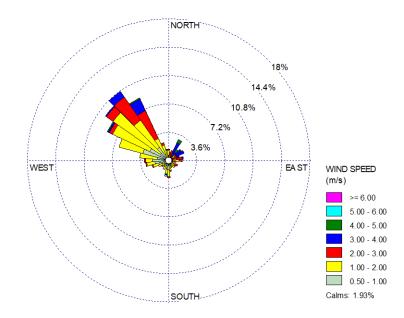
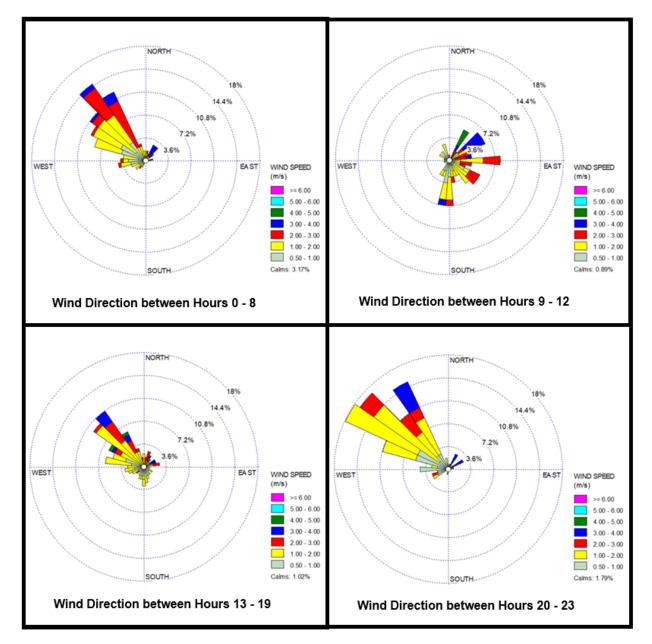
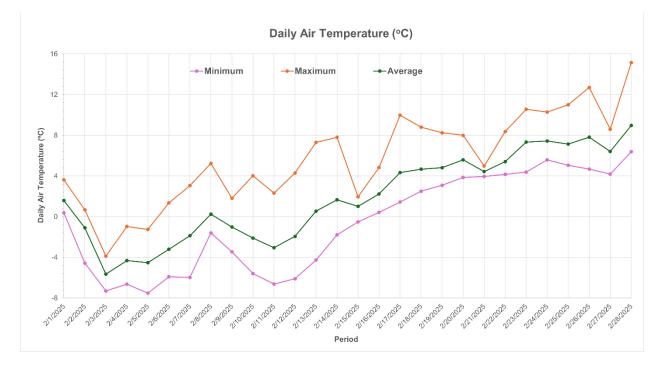


Figure A.9 24-Hour Average TSP Concentrations Recorded at the AQMS during February 2025

Figure A.10 24-Hour Average NO₂ Concentrations Recorded at the AQMS, and the Langdale and Squamish Regional Air Quality Stations during February 2025

Note: Missing 24-hour average data for NO₂ (AQMS) due to the instrument's quarterly maintenance and calibration on February 12, 2025.


Figure A.12 Windrose for Woodfibre LNG Meteorology Station during February 2025

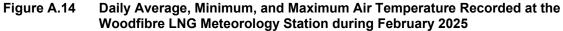
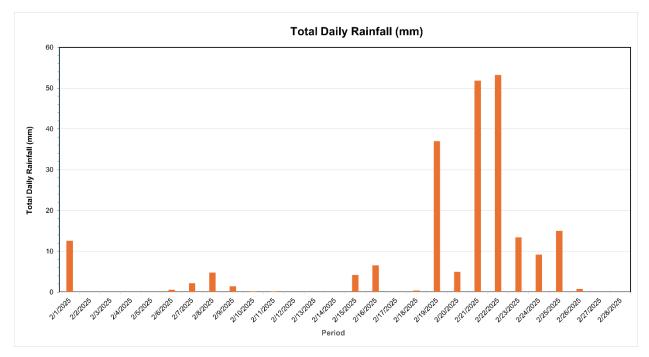



Figure A.15 Daily Rainfall Recorded at the Woodfibre LNG Meteorology Station during February 2025

Appendix B Data Tables

Date	AQMS (24-hr Aver	AQMS (24-hr Average)						
	PM _{2.5}	PM ₁₀	TSP	NO2	NO ₂			
	µg/m³	µg/m³	µg/m³	ррь	ppb			
2/1/2025	5.3	11.9	20.0	4.7	22.4			
2/2/2025	6.2	8.9	15.1	5.5	14.0			
2/3/2025	6.6	18.2	31.9	7.5	12.3			
2/4/2025	6.8	19.7	48.5	6.6	22.4			
2/5/2025	6.0	13.4	28.9	6.5	20.7			
2/6/2025	5.5	11.3	28.3	6.9	13.0			
2/7/2025	5.1	11.7	28.3	5.4	12.4			
2/8/2025	5.1	8.5	16.4	2.0	5.5			
2/9/2025	4.4	9.1	18.7	3.6	7.4			
2/10/2025	5.3	12.0	25.8	3.9	11.3			
2/11/2025	5.1	12.9	_ a	1.0	4.0			
2/12/2025	3.9	8.8	_ a	_ b	— ^b			
2/13/2025	5.5	9.8	_ a	9.6	15.9			
2/14/2025	7.3	14.5	_ a	13.8	26.2			
2/15/2025	6.5	15.3	_ a	8.7	15.8			
2/16/2025	6.3	28.9	_ a	8.0	19.1			
2/17/2025	5.5	18.6	_ a	7.4	17.9			
2/18/2025	6.1	17.9	_ a	10.9	20.5			
2/19/2025	8.2	30.1	_ a	12.3	31.7			
2/20/2025	9.5	53.0	_ a	16.4	34.7			
2/21/2025	3.7	11.3	_ a	14.6	29.1			
2/22/2025	7.5	21.6	_ a	19.5	33.9			
2/23/2025	6.3	16.5	_ a	13.0	25.2			
2/24/2025	6.0	21.5	_ a	12.7	26.0			
2/25/2025	3.8	10.8	_ a	11.3	37.5			
2/26/2025	4.5	15.7	_ a	7.8	17.9			
2/27/2025	5.0	11.3	_ a	7.2	22.1			
2/28/2025	3.0	11.8	_ a	5.5	25.7			

Table B.1 Daily PM_{2.5}, PM₁₀, TSP, and NO₂ Concentrations Recorded at the AQMS for February 2025

Date	AQMS (24-hr Averag	je)	AQMS (1-hr Max)		
	PM _{2.5}	PM ₁₀	TSP	NO ₂	NO ₂
	µg/m³	µg/m³	µg/m³	ppb	ppb

Note

^a Data unavailable due to the TSP analyzer (BAM 1020) being unable to provide valid data during this period.

^b Data unavailable due instrument quarterly maintenance and calibration.

Table B.2Daily Wind Speed, Air Temperature, and Rainfall Recorded at the Woodfibre LNG
Meteorology Station for February 2025

Date	Daily Wind Speed (m/s)		Daily Air Te (°C)	mperature	Daily Total Rainfall (mm)	
	Мах	Avg	Min	Мах	Avg	
2/1/2025	12.1	1.7	0.4	3.6	1.6	12.6
2/2/2025	7.5	2.2	-4.6	0.7	-1.1	0.0
2/3/2025	11.9	3.5	-7.3	-3.9	-5.7	0.0
2/4/2025	9.9	2.2	-6.6	-1.0	-4.3	0.0
2/5/2025	8.9	2.1	-7.5	-1.3	-4.5	0.0
2/6/2025	9.7	1.9	-5.9	1.4	-3.2	0.6
2/7/2025	7.3	1.7	-6.0	3.1	-1.9	2.2
2/8/2025	5.6	1.3	-1.6	5.2	0.2	4.8
2/9/2025	7.2	1.3	-3.5	1.8	-1.0	1.4
2/10/2025	9.8	2.8	-5.6	4.0	-2.1	0.2
2/11/2025	8.5	2.1	-6.6	2.3	-3.1	0.2
2/12/2025	6.8	1.5	-6.1	4.3	-1.9	0.0
2/13/2025	7.8	2.0	-4.3	7.3	0.5	0.0
2/14/2025	6.4	1.4	-1.8	7.8	1.7	0.0
2/15/2025	4.4	0.9	-0.5	2.0	1.0	4.2
2/16/2025	3.7	0.9	0.4	4.8	2.2	6.6
2/17/2025	4.9	1.0	1.4	10.0	4.3	0.0
2/18/2025	6.0	0.9	2.5	8.8	4.7	0.4
2/19/2025	7.0	1.1	3.1	8.2	4.8	37.0
2/20/2025	3.4	0.7	3.8	8.0	5.6	5.0

Date	Daily Wind Speed (m/s)		Daily Air Ten (°C)	Daily Total Rainfall (mm)		
	Мах	Avg	Min	Max	Avg	
2/21/2025	4.4	0.9	3.9	5.0	4.4	51.8
2/22/2025	6.4	1.0	4.2	8.4	5.4	53.2
2/23/2025	13.9	1.5	4.4	10.6	7.3	13.4
2/24/2025	6.0	1.5	5.6	10.3	7.4	9.2
2/25/2025	4.6	1.0	5.1	11.0	7.1	15.0
2/26/2025	7.5	1.3	4.7	12.7	7.8	0.8
2/27/2025	4.0	0.8	4.2	8.6	6.4	0.0
2/28/2025	7.4	1.1	6.4	15.1	9.0	0.0

Appendix C

Station Calibration and Maintenance Record

A C		aboratorie	S	PM _{2.5} Audit						
Date:	February 12, 2025			Audit Re	ts					
Client:	Woodfibre LNG			Make/Model	Serial Number	Date Last Calibrated				
Location:	Woodfibre, BC			TriCal Flow Device	188	2024-03-28				
Technician:	Brad Moyles			CNX +3000 Fluke	2445002	2024-03-21				
Method:	Beta Attenuation Mass Monitor			RH/BP/Temp Sensor		Apr-24				
Make:	Met One			Audit Criteria:						
Model:	BAM 1020									
Serial number:	U11269			Leak Check (<1.5 L/min):	0.70	PASS				
Parameter:				Sample Flow (±4% of 16.7 L/n	16.63	PASS				
Operating Range:	1000 ug/m ³			Ambient Temperature (±2 °C)	Ambient Temperature (±2 °C):					
	-			Ambient Pressure (±10 mmHg		0.00	PASS			
Start Time:	13:50	.3:50		Ambient RH Error (±10%):	-1.90%	PASS				
Finish Time:	14:35									
				Audit Results:	F	PASS				
			Instru	ment Verification						
Sample Flow	Target (L/min)		Actual (Reference Standard)		Error (%)					
Leak Check		<1.5		0.70						
Flow Check	Flow Check 16.7			16.63		0.4%				
Ambient Temperatu	re:		°C	Ambient Pressure:		mmHg				
Ambient Temperatur	-	-	6.4	Ambient Pressure (Reference)		759				
Ambient Temperature (Analyzer)			5.4	Ambient Pressure (Analyzer)		759				
As-Left Diagnostics				filter RH:	%					
				Ambient Humidity (Reference)	36	5.9			
Flow Rate:	Flow Rate:		L/min	Ambient Humidity (Analyzer)		36.2				
Ambient Temperature:		6.4	°C							
Barometric Pressure:		758.4	mmHg							
Tape Pressure:		766	mmHg							
Filter Relative Humidity:		36.9	%							
Filter Temperature:		25.7	°C							
Smart Inlet Heater Status:		ON								
Measurement Cycle Time:		50	mins							
Background Zero:		0.0	%							
Analyzer Time: 14:1		14:17								
PC Time: 1		14:17								
Analyzer Date:		12-Feb								
PC Date: 12-Fe		12-Feb								

	ories	PM _{2.5} Maintenance Log					
TO BE COMPLETED/UPDATED MONTHLY							
Maintenance Item	Frequency Due	Completed (Y/N)	Date Last Completed	Next Service Date			
Nozzle and vane cleaning	2 Months	Y	2025-02-12	2025-03-30			
Leak check	2 Months	Y	2025-02-12	2025-03-30			
Flow system check	2 Months	Y	2025-02-12	2025-03-30			
Clean capstan shaft and pinch roller	2 Months	Y	2025-02-12	2025-03-30			
Completely disassemble and clean inlet and cyclone	2 Months	Y	2025-02-12	2025-03-30			
Download and save digital data and error log	2 Months	Y	2025-02-12	2025-03-30			
Compare digital data to analog data	2 Months	Y	2025-02-12	2025-03-30			
Check and set clock	2 Months	Y	2025-02-12	2025-03-30			
Replace filter tape	2 Months	Y	WLNG Staff	2025-03-30			
Run SELF TEST	2 Months	Y	2025-02-12	2025-03-30			
Download and verify settings file	2 Months	Y	2025-02-12	2025-03-30			
Flow system audit and calibration	2 Months	Y	2025-02-12	2025-03-30			
Ambient pressure, temperature and RH audit and calibration	2 Months	Y	2025-02-12	2025-03-30			
Replace or clean pump muffler	12 Months	Ν					
Test smart heater	24 Months	Ν					
Perform 72-hour BKGD test	12 Months	Ν					
Clean internal debris filter	12 Months	Ν					
Remove and check membrane span foil	12 Months	Y					
Beta detector count rate and dark	12 Months	N					
count test	12 101011113	14					
Clean vertical inlet tube	12 Months	N					
Test analog DAC output if necessary	12 Months	N					
Replace lithium battery if necessary	12 Months	N					
Rebuild vacuum pump	24 Months	Ν					
Replace nozzle o-ring	24 Months	Ν					
Replace pump tubing if necessary	24 Months	Ν					

AG (CT La	aboratorie	5	PM10 A	Audit		
Date:	February 1	3, 2025	-	Audit Re	ts	S	
Client:	Woodfibre	LNG		Make/Model	Serial Number	Date Last	Calibrated
Location:	Woodfibre	Woodfibre, BC		TriCal Flow Device	188	2024-	03-28
Technician:	Brad Moyle	es		CNX +3000 Fluke	2445002	2024-	03-21
Method:	Beta Atten	uation Mass	Monitor	RH/BP/Temp Sensor	181250070	Apr	-24
Make:	Met One			Audit Criteria:			
Model:	BAM 1020						
Serial number:	W22222			Leak Check (<1.5 L/min):		0.80	PASS
Parameter:	PM10			Sample Flow (±4% of 16.7 L/n	nin):	16.85	PASS
Operating Range:	1000 ug/m	3		Ambient Temperature (±2 °C)):	0.10	PASS
	-			Ambient Pressure (±10 mmHg		0.00	PASS
Start Time:	11:20			Ambient RH Error (±10%):		-0.01	PASS
Finish Time:	12:10						
				Audit Results:	F	PASS	
			Instru	iment Verification			
Sample Flow		Target (L/m	in)	Actual (Reference S	Error (%)		
Leak Check		<1.5		0.80			
Flow Check		16.7		16.85	0.9%		
Ambient Temperatu	re:		°C	Ambient Pressure:	mmHg		
Ambient Temperatur	e (Reference	e)	4.6	Ambient Pressure (Reference)	Ambient Pressure (Reference)		
Ambient Temperatur	e (Analyzer)		4.7	Ambient Pressure (Analyzer)	748		
As	-Left Diag	nostics		filter RH:		9	6
				Ambient Humidity (Reference)	38	8.5
Flow Rate:		16.68	L/min	Ambient Humidity (Analyzer)			
Ambient Temperatur	e:	4.6	°C				
Barometric Pressure:		748	mmHg				
Tape Pressure:		27.1	mmHg				
Filter Relative Humid	ity:	38	%				
Filter Temperature:		27	°C				
Smart Inlet Heater St	atus:	ON					
Measurement Cycle	Гime:	42	mins				
Background Zero:		0.0	%				
Analyzer Time:		11:49					
PC Time:		11:48					
Analyzer Date:		13-Feb					
PC Date:		13-Feb					

TO BE COMPLETED/UPDATED MONTHLY							
Maintenance Item	Frequency D	oue Complete (Y/N)	d Date Last Completed	Next Service Date			
Nozzle and vane cleaning	2 Months	Y	2025-02-13	2025-03-30			
Leak check	2 Months	Y	2025-02-13	2025-03-30			
Flow system check	2 Months	Y	2025-02-13	2025-03-30			
Clean capstan shaft and pinch roller	2 Months	Y	2025-02-13	2025-03-30			
Thoroughly clean inlet and particle trap	2 Months	Y	2025-02-13	2025-03-30			
Download and save digital data and error log	2 Months	Y	2025-02-18	2025-03-30			
Compare digital data to analog data	2 Months	Y	2025-02-18	2025-03-30			
Check and set clock	2 Months	Y	2025-02-13	2025-03-30			
Replace filter tape	2 Months	Y	WLNG Staff	2025-03-30			
Run SELF TEST	2 Months	Y	2025-02-13	2025-03-30			
Download and verify settings file	2 Months	Y	2025-02-13	2025-03-30			
Flow system audit and calibration	2 Months	Y	2025-02-13	2025-03-30			
Ambient pressure, temperature and RH audit and calibration	2 Months	Y	2025-02-13	2025-03-30			
Replace or clean pump muffler	12 Month	s N					
Test smart heater	24 Month	s N					
Perform 72-hour BKGD test	12 Month	s N					
Clean internal debris filter	12 Month	s N					
Remove and check membrane span foil	12 Month	s Y					
Beta detector count rate and dark	12						
count test	12 Month	s N					
Clean vertical inlet tube	12 Month	s N					
Test analog DAC output if necessary	12 Month	s N					
Replace lithium battery if necessary	12 Month	s N					
Rebuild vacuum pump	24 Month	s N					
Replace nozzle o-ring	24 Month	s N					
Preplace pump tubing if necessary	24 Month	s N					

A C		aboratorie	s	TSP A	udit		
Date:	February 1	1, 2025	-	Audit Re	ıts		
Client:	Woodfibre	LNG		Make/Model	Serial Number	Date Last	Calibrated
Location:	Woodfibre, BC		TriCal Flow Device	188	2024-	03-28	
Technician:	Brad Moyle	es		CNX +3000 Fluke	2445002	2024-	03-21
Method:	Beta Atten	uation Mass	Monitor	RH/BP/Temp Sensor	181250070	Арг	-24
Make:	Met One			Audit Criteria:			
Model:	BAM 1020						
Serial number:	A12386			Leak Check (<1.5 L/min):		0.70	PASS
Parameter:	TSP			Sample Flow (±4% of 16.7 L/n	nin):	16.64	PASS
Operating Range:	1000 ug/m	3		Ambient Temperature (±2 °C)	:	0.10	PASS
	-			Ambient Pressure (±10 mmH	g):	0.00	PASS
Start Time:	12:26			Ambient RH Error (±10%):		4.49%	PASS
Finish Time:	13:09						
				Audit Results:	F	PASS	
			Instr	ument Verification			
Sample Flow		Target (L/m	in)	Actual (Reference S	itandard)	Error (%)	
Leak Check		<1.5		0.70	0.70		
Flow Check		16.7		16.64	0.4%		
Ambient Temperatu	re:		°C	Ambient Pressure:	mmHg		
Ambient Temperatur	-		3.4	Ambient Pressure (Reference)	770		
Ambient Temperatur	e (Analyzer)		3.5	Ambient Pressure (Analyzer)	770		
As	s-Left Diag	nostics		filter RH:		9	6
				Ambient Humidity (Reference)	31	2
Flow Rate:		16.64	L/min	Ambient Humidity (Analyzer)		32	2.6
Ambient Temperatur	e:	3.4	°C				
Barometric Pressure:		770	mmHg				
Tape Pressure:			mmHg				
Filter Relative Humid	ity:	31.2	%				
Filter Temperature:		22.1	°C				
Smart Inlet Heater St	atus:	On					
Measurement Cycle	Time:	42	mins				
Background Zero:		0	%				
Analyzer Time:		13:04					
PC Time:		13:04					
Analyzer Date:		11-Feb					
PC Date:		11-Feb					

		TSP Maintenance Log				
TO BE	COMPLETED/UP	DATED MONTH	LY			
Maintenance Item	Frequency Due	Completed (Y/N)	Date Last Completed	Next Service Date		
Nozzle and vane cleaning	2 Months	Y	2025-02-11	2025-03-30		
Leak check	2 Months	Y	2025-02-11	2025-03-30		
Flow system check	2 Months	Y	2025-02-11	2025-03-30		
Clean capstan shaft and pinch roller	2 Months	Y	2025-02-11	2025-03-30		
Thoroughly clean inlet	2 Months	Y	2025-02-11	2025-03-30		
Download and save digital data and error log	2 Months	Y	2025-02-18	2025-03-30		
Compare digital data to analog data	2 Months	Y	2025-02-18	2025-03-30		
Check and set clock	2 Months	Y	2025-02-11	2025-03-30		
Replace filter tape	2 Months	N	WLNG Staff	2025-03-30		
Run SELF TEST	2 Months	Y	2025-02-11	2025-03-30		
Download and verify settings file	2 Months	Y	2025-02-11	2025-03-30		
Flow system audit and calibration	2 Months	Y	2025-02-11	2025-03-30		
Ambient pressure, temperature and RH audit and calibration	2 Months	Y	2025-02-11	2025-03-30		
Replace or clean pump muffler	12 Months	N				
Test smart heater	24 Months	N				
Perform 72-hour BKGD test	12 Months	N				
Clean internal debris filter	12 Months	N				
Remove and check membrane span foil	12 Months	Ν				
Beta detector count rate and dark count test	12 Months	Ν				
Clean vertical inlet tube	12 Months	N				
Test analog DAC output if necessary	12 Months	N				
Replace lithium battery if necessary	12 Months	N				
Rebuild vacuum pump	24 Months	N				
Replace nozzle o-ring	24 Months	N				
Replace pump tubing if necessary	24 Months	N				

	G	GAT Laborat		el	Log Repo	ort	
Station		WLNG, Woodfibre, BC					
Date		February 11-13, 2025			٨	Time Out	١
	ither itions	ther			Tech	nician	BM

On site for AQM station quarterly calibration Leak check, passed

Pressure check, passed

Flow calibration, passed for TSP, PM10 and PM2.5

Ambient temperature check, passed

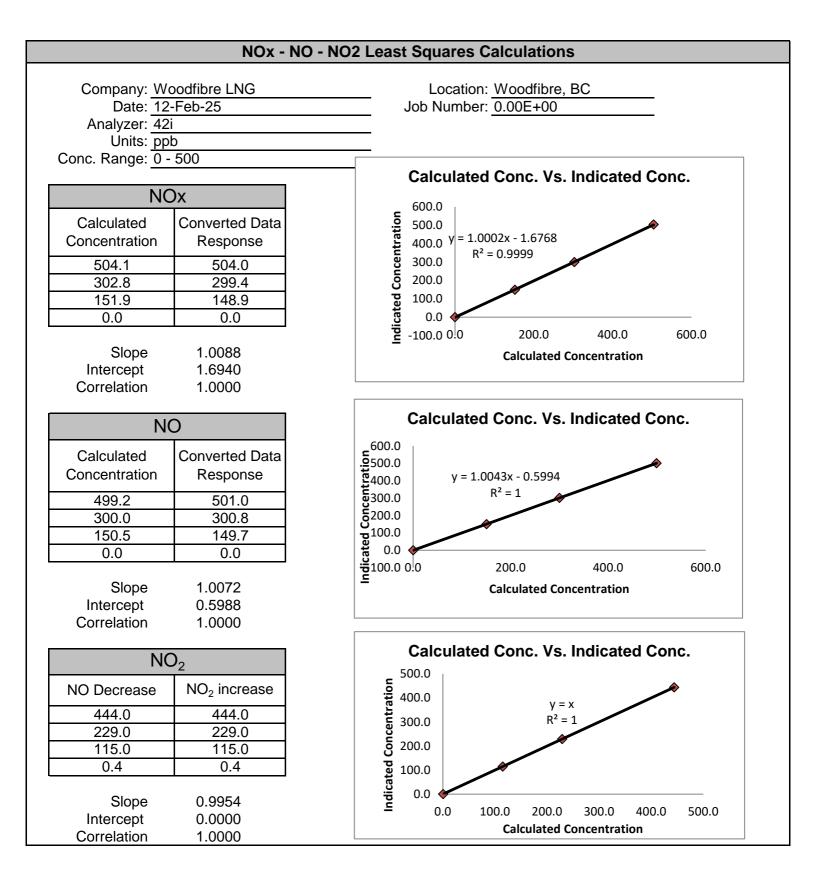
Shelter temperature check, passed

RH check, passed

BP check, passed

Cleaned sample inlets for PM2.5, PM10, TSP

Replaced TSP sampler with spare unit (display was not working)


Attempted to replace PM10 unit since output not working to PC, however the spare was not operational > another spare unit will be sent to site for replacement during next visit

Revision: 3			01115	y System F	Qualit			
2025-02- Jgallw		tine	Rout)-NO ₂ -NO _X	ries NC	.aborato	. Т.	👏 (AC)
	M		IIBRAT	LYZER CA	AIR ANA	MBIENT	А	
et. Complete the site information a				-				tructions - Use this form to recor
ailed. If the calibration has failed			. .	ceptance criteria w	oxes and the ac	in all relevant b	umber (S/N). Fill	ude equipment type and serial n
						ument until the	alibrate the instru	ke necessary correction and/or o
		ob #		e Informati		2	Voodfibre LNG	Company
	uary 12, 2025					-	Woodfibre, BC	· · · · · · · · · · · · · · · · · ·
10:00			Start T				· · · ·	
May 12, 2025	Next Due:		ovember 27,					
				& Monitor I		r Information	Calibrata	
		nformation 42i	nalyzer M/M	А		Sabi	Calibrator M/M	(
	58		nalyzer S/N				Calibrator S/N	
	cence	Chemiluminesc	ion Principle	Detect		Zero Air C	Zero Air S/N	
						16-Apr	rification Date	Ve
		<u>_</u>		ration Stan				0 111 11 0
ppm ± 2% @ Tank Pressu 35°C 1200 PS	IO Conc.			Expiry Da	ID Number CC522261		Type	Calibration Standard
35°C 1200 PS Measurement (sccm)	50.84 alibrator Flow		20 0	29-Nov-2	fter Calibratio		Cylind Before Cali	NO, NOx Analyzer Settings
	Averac	Calibration			0-500 ppb		0-500 p	Concentration Range ppb
	Cal Ga	Point			7.9 / 7.8			Background ppb
Air Flo	Flow 0.0	Zero		3	.993 / 0.98 0.557	0		Coefficient Sample Flow cc/min
5000.0 4950		High (100%			414 / 405			Span Value NOX / NO2
5000.0 4970	%) 29.5	Middle (60%						•
E000 0 400E								
5000.0 4985) 14.8	Low (30%)				Current Shelt		
5000.0 4985.) 14.8	Low (30%)		-		Current Shelt t Barometric		
5000.0 4965) 14.8	Low (30%)	NO	0 mm/hg	Pressure 77			
3000.0 4963) 14.8	Low (30%)	- NO _X		Pressure 77			
Calculated Stability x ppb) 14.8 Average	Low (30%) 3- Minute	- NO _X 6- Minute	0 mm/hg	Pressure 77	t Barometric		
Calculated Stability				10 mm/hg	Pressure 77 Calibra	t Barometric	Curren	As Found Zero
Calculated Stability x ppb	Average	3- Minute	6- Minute	mm/hg ation Data 9- Minute	Pressure 77 Calibra 12- Minute	t Barometric 15- Minute	Curren Stability Start	As Found Zero As Found Span
Calculated Stability x ppb 0.1	Average	3- Minute -0.6	6- Minute -0.5	mm/hg ation Data 9- Minute -0.4	Pressure 77 Calibra 12- Minute -0.5	15- Minute	Curren Stability Start 6:40	
Calculated Stability x ppb 0.1 0.4	Average -0.5 501.8	3- Minute -0.6 501.0	6- Minute -0.5 502.0	mm/hg ation Data 9- Minute -0.4 502.0	Pressure 77 Calibra 12- Minute -0.5 502.0	15- Minute -0.5 502.0	Curren Stability Start 6:40 7:00	As Found Span
Calculated Stability x ppb 0.1 0.4 0.0 0.0	Average -0.5 501.8 0.0 504.0	3- Minute -0.6 501.0 0.0 504.0	6- Minute -0.5 502.0 0.0 504.0	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0	Pressure 77 Calibra 12- Minute -0.5 502.0 0.0 504.0	15- Minute -0.5 502.0 0.0 504.0	Curren Stability Start 6:40 7:00 7:15 9:05	As Found Span After Zero Adjust After Span Adjust - 1
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.0 0.5	Average -0.5 501.8 0.0 504.0 299.4	3- Minute -0.6 501.0 0.0 504.0 300.0	6- Minute -0.5 502.0 0.0 504.0 299.0	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0	Pressure 77 Calibra 12- Minute -0.5 502.0 0.0 504.0 299.0 2	15- Minute -0.5 502.0 0.0 504.0 299.0	Curren Stability Start 6:40 7:00 7:15 9:05 9:20	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2
Calculated Stability x ppb 0.1 0.4 0.0 0.0	Average -0.5 501.8 0.0 504.0	3- Minute -0.6 501.0 0.0 504.0	6- Minute -0.5 502.0 0.0 504.0	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0	Pressure 77 Calibra 12- Minute -0.5 502.0 0.0 504.0	15- Minute -0.5 502.0 0.0 504.0	Curren Stability Start 6:40 7:00 7:15 9:05 9:20	As Found Span After Zero Adjust After Span Adjust - 1
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5	Average -0.5 501.8 0.0 504.0 299.4	3- Minute -0.6 501.0 0.0 504.0 300.0	6- Minute -0.5 502.0 0.0 504.0 299.0	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0	Pressure 77 Calibra 12- Minute -0.5 502.0 0.0 504.0 299.0 2	15- Minute -0.5 502.0 0.0 504.0 299.0 149.0	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5 0.2 Converted	Average -0.5 501.8 0.0 504.0 299.4 148.9	3- Minute -0.6 501.0 0.0 504.0 300.0 148.7	6- Minute -0.5 502.0 0.0 504.0 299.0 148.6	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2	Pressure 77 Calibra 12- Minute -0.5 502.0 0.0 504.0 299.0 149.2	t Barometric 15- Minute -0.5 502.0 0.0 504.0 299.0 149.0 Calibration	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5 0.2 Converted Data	Average -0.5 501.8 0.0 504.0 299.4	3- Minute -0.6 501.0 0.0 504.0 300.0	6- Minute -0.5 502.0 0.0 504.0 299.0 148.6	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2 Analyzer	Tessure T Calibra 12- Minute -0.5 502.0 0.0 504.0 299.0 149.2 Calculated 149.2	15- Minute -0.5 502.0 0.0 504.0 299.0 149.0	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5 0.2 Converted	Average -0.5 501.8 0.0 504.0 299.4 148.9 Slope	3- Minute -0.6 501.0 0.0 504.0 300.0 148.7	6- Minute -0.5 502.0 0.0 504.0 299.0 148.6	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2	Pressure 77 Calibra 12- Minute -0.5 502.0 0.0 504.0 299.0 149.2	t Barometric 15- Minute -0.5 502.0 0.0 504.0 299.0 149.0 Calibration Gas Flow @	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35 Dilution Air Flow Rate @	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5 0.2 Converted Data Response -0.5	Average -0.5 501.8 0.0 504.0 299.4 148.9 Slope	3- Minute -0.6 501.0 0.0 504.0 300.0 148.7 Point Error % NA	6- Minute -0.5 502.0 0.0 504.0 299.0 148.6 Correction Factor (Cc/Ci)	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2 Analyzer Response	Tessure T Calibra 12- Minute -0.5 502.0 0.0 504.0 299.0 149.2 Calculated Conc. (Cc) 0.0 0.0 0.0	t Barometric 15- Minute -0.5 502.0 0.0 504.0 299.0 149.0 Calibration Gas Flow @ STP (corrected) 0.0	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35 9:35 Dilution Air Flow Rate @ STP (corrected) 1098	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2 After Span Adjust - 3 Set point As Found Zero
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.0 0.5 0.2 Converted Data Response -0.5 501.8	Average -0.5 501.8 0.0 504.0 299.4 148.9 Slope	3- Minute -0.6 501.0 0.0 504.0 300.0 148.7 Point Error % NA -0.5%	6- Minute -0.5 502.0 0.0 504.0 299.0 148.6 Correction Factor (Cc/Ci) N/A 1.0045	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2 Analyzer Response -0.5 501.8	Tessure Transmission 12- Minute -0.5 -0.5 502.0 0.0 504.0 299.0 149.2 Calculated Conc. (Cc) 0.0 0.0 504.1	t Barometric 15- Minute -0.5 502.0 0.0 504.0 299.0 149.0 Calibration Gas Flow @ STP (corrected) 0.0 10.8	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35 9:35 Dilution Air Flow Rate @ STP (corrected) 1098 1087	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2 After Span Adjust - 3 Set point As Found Zero As Found Span
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5 0.2 Converted Data Response -0.5 501.8 0.0	Average -0.5 501.8 0.0 504.0 299.4 148.9 Slope Error (%)	3- Minute -0.6 501.0 0.0 504.0 300.0 148.7 Point Error % NA -0.5% NA	6- Minute -0.5 502.0 0.0 504.0 299.0 148.6 Correction Factor (Cc/Ci) N/A 1.0045 N/A	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2 Analyzer Response -0.5 501.8 0.0	Tessure Transmission 12- Minute -0.5 -0.5 502.0 0.0 504.0 299.0 149.2 Calculated Conc. (Cc) 0.0 504.1 0.0	t Barometric 15- Minute -0.5 502.0 0.0 299.0 149.0 Calibration Gas Flow @ STP (corrected) 0.0 10.8 0.0	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35 9:35 0 9:35 0 9:35 0 9:30 9:30 9:30 0 9:30 0 9:30 0 9:35	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2 After Span Adjust - 3 Set point As Found Zero As Found Span After Zero Adjust
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5 0.2 Converted Data Response -0.5 501.8 0.0 504.0	Average -0.5 501.8 0.0 504.0 299.4 148.9 Slope Error (%)	3- Minute -0.6 501.0 0.0 504.0 300.0 148.7 Point Error % NA -0.5% NA 0.0%	6- Minute -0.5 502.0 0.0 504.0 299.0 148.6 Correction Factor (Cc/Ci) N/A 1.0045 N/A 1.0001	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2 Analyzer Response -0.5 501.8 0.0 504.0	Tessure Transmission 12- Minute -0.5 502.0 0.0 504.0 299.0 149.2 Calculated Conc. (Cc) 0.0 504.1 0.0 504.1 0.0 504.1	t Barometric 15- Minute -0.5 502.0 0.0 299.0 149.0 Calibration Gas Flow @ STP (corrected) 0.0 10.8 0.0 10.8	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35 9:35 0 9:35 0 9:30 9:30 0 9:30 0 9:30 0 9:30 0 9:35 0 0 9:35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2 After Span Adjust - 3 Set point As Found Zero As Found Span After Zero Adjust After Span Adjust - 1
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5 0.2 Converted Data Response -0.5 501.8 0.0	Average -0.5 501.8 0.0 504.0 299.4 148.9 Slope Error (%) L1.2% 2.5%	3- Minute -0.6 501.0 0.0 504.0 300.0 148.7 Point Error % NA -0.5% NA 0.0% -1.2%	6- Minute -0.5 502.0 0.0 299.0 148.6 Correction Factor (Cc/Ci) N/A 1.0045 N/A 1.0001 1.0115	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2 Analyzer Response -0.5 501.8 0.0 504.0 299.4	Tessure Transmission 12- Minute -0.5 502.0 0.0 504.0 299.0 149.2 Calculated Conc. (Cc) 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1	t Barometric 15- Minute -0.5 502.0 0.0 299.0 149.0 Calibration Gas Flow @ STP (corrected) 0.0 10.8 0.0 10.8 6.5	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35 9:35 0 9:35 0 9:30 9:30 0 9:30 0 9:30 0 9:30 0 9:30 0 9:35 0 0 9:35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2 After Span Adjust - 3 Set point As Found Zero As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5 0.2 Converted Data Response -0.5 501.8 0.0 504.0 299.4	Average -0.5 501.8 0.0 504.0 299.4 148.9 Slope Error (%)	3- Minute -0.6 501.0 0.0 504.0 300.0 148.7 Point Error % NA -0.5% NA 0.0%	6- Minute -0.5 502.0 0.0 504.0 299.0 148.6 Correction Factor (Cc/Ci) N/A 1.0045 N/A 1.0001	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2 Analyzer Response -0.5 501.8 0.0 504.0	Tessure Transmission 12- Minute -0.5 502.0 0.0 504.0 299.0 149.2 Calculated Conc. (Cc) 0.0 504.1 0.0 504.1 0.0 504.1	t Barometric 15- Minute -0.5 502.0 0.0 299.0 149.0 Calibration Gas Flow @ STP (corrected) 0.0 10.8 0.0 10.8	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35 9:35 0 9:35 0 0 9:35 0 0 9:30 0 9:30 0 9:30 0 9:30 0 0 9:35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2 After Span Adjust - 3 Set point As Found Zero As Found Span After Zero Adjust After Span Adjust - 1
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5 0.2 Converted Data Response -0.5 501.8 0.0 504.0 299.4	Average -0.5 501.8 0.0 504.0 299.4 148.9 Slope Error (%) L1.2% 2.5%	3- Minute -0.6 501.0 0.0 504.0 300.0 148.7 Point Error % NA -0.5% NA 0.0% -1.2%	6- Minute -0.5 502.0 0.0 299.0 148.6 Correction Factor (Cc/Ci) N/A 1.0045 N/A 1.0001 1.0115	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2 Analyzer Response -0.5 501.8 0.0 504.0 299.4	Tessure Transmission 12- Minute -0.5 502.0 0.0 504.0 299.0 149.2 Calculated Conc. (Cc) 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1	t Barometric 15- Minute -0.5 502.0 0.0 299.0 149.0 Calibration Gas Flow @ STP (corrected) 0.0 10.8 0.0 10.8 6.5	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35 9:35 0 9:35 0 0 9:35 0 0 9:30 0 9:30 0 9:30 0 9:30 0 0 9:35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2 After Span Adjust - 3 Set point As Found Zero As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5 0.2 Converted Data Response -0.5 501.8 0.0 504.0 299.4	Average -0.5 501.8 0.0 504.0 299.4 148.9 Slope Error (%) L1.2% 2.5%	3- Minute -0.6 501.0 0.0 504.0 300.0 148.7 Point Error % NA -0.5% NA 0.0% -1.2%	6- Minute -0.5 502.0 0.0 299.0 148.6 Correction Factor (Cc/Ci) N/A 1.0045 N/A 1.0001 1.0115	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2 Analyzer Response -0.5 501.8 0.0 504.0 299.4	Tessure Transmission 12- Minute -0.5 502.0 0.0 504.0 299.0 149.2 Calculated Conc. (Cc) 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1	t Barometric 15- Minute -0.5 502.0 0.0 299.0 149.0 Calibration Gas Flow @ STP (corrected) 0.0 10.8 0.0 10.8 6.5 3.3	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35 0:05 9:20 0:05	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2 After Span Adjust - 3 Set point As Found Zero As Found Span After Span Adjust - 1 After Span Adjust - 1 After Span Adjust - 3
Calculated Stability x ppb 0.1 0.4 0.0 0.0 0.5 0.2 Converted Data Response -0.5 501.8 0.0 504.0 299.4	Average -0.5 501.8 0.0 504.0 299.4 148.9 Slope Error (%) L1.2% 2.5%	3- Minute -0.6 501.0 0.0 504.0 300.0 148.7 Point Error % NA -0.5% NA 0.0% -1.2%	6- Minute -0.5 502.0 0.0 299.0 148.6 Correction Factor (Cc/Ci) N/A 1.0045 N/A 1.0001 1.0115	mm/hg ation Data 9- Minute -0.4 502.0 0.0 504.0 300.0 149.2 Analyzer Response -0.5 501.8 0.0 504.0 299.4	Tessure Transmission 12- Minute -0.5 502.0 0.0 504.0 299.0 149.2 Calculated Conc. (Cc) 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1 0.0 504.1	t Barometric 15- Minute -0.5 502.0 0.0 504.0 299.0 149.0 Calibration Gas Flow @ STP (corrected) 0.0 10.8 0.0 10.8 6.5 3.3	Curren Stability Start 6:40 7:00 7:15 9:05 9:20 9:35 0:05 9:20 0:05	As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2 After Span Adjust - 3 Set point As Found Zero As Found Span After Zero Adjust After Span Adjust - 1 After Span Adjust - 2

			Calib	ration Data	- NO			
5	Stability Start		12- Minute	9- Minute	6- Minute	3- Minute	Average	Calculated Stability x ppb
As Found Zero	6:40	-0.7	-0.7	-0.7	-0.8	-0.7	-0.7	0.0
As Found Span	7:00	501.0	501.0	501.0	501.0	501.0	501.0	0.0
After Zero Adjust	7:15	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0
After Span Adjust - 1	9:05	501.0	501.0	501.0	501.0	501.0	501.0	0.0
After Span Adjust - 2	9:20	301.0	301.0	301.0	301.0	300.0	300.8	0.4
After Span Adjust - 3	9:35	150.0	150.0	149.4	149.4	149.5	149.7	0.3
	Dilution Air Flow Rate @ STP (corrected)	Calibration Gas Flow @ STP (corrected)	Calculated Conc. (Cc)	Analyzer Response	Correction Factor (Cc/Ci)	Point Error %	Slope Error (%)	Converted Data Response
As Found Zero	1098	0.0	0.0	-0.7	N/A	NA		-0.7
As Found Span	1087	10.8	499.2	501.0	0.9965	0.3%		501.0
After Zero Adjust	1098	0.0	0.0	0.0	N/A	NA		0.0
After Span Adjust - 1	1087	10.8	499.2	501.0	0.9965	0.3%	0.5%	501.0
After Span Adjust - 2	1007	6.5	300.0	300.8	0.9972	0.3%	0.6%	300.8
After Span Adjust - 3	1095	3.3	150.5	149.7	1.0055	-0.6%	1.7%	149.7
ļ				ation Data	_			Calculated Stability
	Stability Start		12- Minute	9- Minute	- 6- Minute	3- Minute	Average	Calculated Stability x ppb
ع 15 min ref	9:55	0.0	12- Minute 0.0	9- Minute 0.0	6- Minute	-1.0	-0.4	x ppb 0.5
	-		12- Minute	9- Minute	- 6- Minute		Ű	x ppb
15 min ref	9:55	0.0	12- Minute 0.0	9- Minute 0.0	6- Minute	-1.0	-0.4	x ppb 0.5
15 min ref 400	9:55 10:10	0.0 441.0	12- Minute 0.0 442.0	9- Minute 0.0 444.0	- Minute -1.0 444.0	-1.0 444.0	-0.4 443.0	x ppb 0.5 1.3
15 min ref 400 300	9:55 10:10 10:25	0.0 441.0 228.0	12- Minute 0.0 442.0 228.0	9- Minute 0.0 444.0 229.0	6- Minute -1.0 444.0 229.0	-1.0 444.0 229.0 116.0	-0.4 443.0 228.6	x ppb 0.5 1.3 0.5 0.5 0ata
15 min ref 400 300 150	9:55 10:10 10:25 10:40 Nox	0.0 441.0 228.0 115.0 NO	12- Minute 0.0 442.0 228.0 115.0 NO2 Calculated	9- Minute 0.0 444.0 229.0 116.0 NO2 Analyzer	6- Minute -1.0 444.0 229.0 116.0 Correction Factor	-1.0 444.0 229.0 116.0 Slope Error	-0.4 443.0 228.6 115.6 Converted D	x ppb 0.5 1.3 0.5 0.5 0ata
15 min ref 400 300 150 Set point	9:55 10:10 10:25 10:40 Nox Response	0.0 441.0 228.0 115.0 NO Response	12- Minute 0.0 442.0 228.0 115.0 NO2 Calculated Conc.	9- Minute 0.0 444.0 229.0 116.0 NO2 Analyzer Conc.	6- Minute -1.0 444.0 229.0 116.0 Correction Factor (Cc/Ci)	-1.0 444.0 229.0 116.0 Slope Error (%)	-0.4 443.0 228.6 115.6 Converted D Response	x ppb 0.5 1.3 0.5 0.5 0ata
15 min ref 400 300 150 Set point 15 Min Reference Adjusted GPT 400 O3	9:55 10:10 10:25 10:40 Nox Response 525.0 510.0	0.0 441.0 228.0 115.0 NO Response 525.0 66.0	12- Minute 0.0 442.0 228.0 115.0 NO2 Calculated Conc. 0.0 444.0	9- Minute 0.0 444.0 229.0 116.0 NO2 Analyzer Conc. 0.0		-1.0 444.0 229.0 116.0 Slope Error (%) NA 1.2%	-0.4 443.0 228.6 115.6 Converted D Response -0.4 443.0	x ppb 0.5 1.3 0.5 0.5 0ata
15 min ref 400 300 150 Set point 15 Min Reference Adjusted GPT 400 O3 GPT 2 (200 cc O3)	9:55 10:10 10:25 10:40 Nox Response 525.0 510.0 518.0	0.0 441.0 228.0 115.0 NO Response 525.0 66.0 289.0	12- Minute 0.0 228.0 115.0 NO2 Calculated Conc. 0.0 444.0 229.0	9- Minute 0.0 444.0 229.0 116.0 NO2 Analyzer Conc. 0.0 444.0 229.0	- 6- Minute -1.0 444.0 229.0 116.0 Correction Factor (Cc/Ci) N/A 1.0000 1.0000	-1.0 444.0 229.0 116.0 Slope Error (%) NA 1.2% 1.6%	-0.4 443.0 228.6 115.6 Converted D Response -0.4 443.0 228.6	x ppb 0.5 1.3 0.5 0.5 0ata
15 min ref 400 300 150 Set point 15 Min Reference Adjusted GPT 400 O3	9:55 10:10 10:25 10:40 Nox Response 525.0 510.0	0.0 441.0 228.0 115.0 NO Response 525.0 66.0	12- Minute 0.0 442.0 228.0 115.0 NO2 Calculated Conc. 0.0 444.0	9- Minute 0.0 444.0 229.0 116.0 NO2 Analyzer Conc. 0.0 444.0		-1.0 444.0 229.0 116.0 Slope Error (%) NA 1.2%	-0.4 443.0 228.6 115.6 Converted D Response -0.4 443.0	x ppb 0.5 1.3 0.5 0.5 0ata

Acceptance Criteria - From Part B1 Ambient Air Quality Monitoring BC Field Sampling Manual

		NOX	0 N	NO2
1) Instrument is adjusted to give a correction factor	As Found Span vs. Expected	-0.5%	0.3%	1.2%
(Ccalculated / Cindicated) as close to 1.0 as possible.		PASS	PASS	PASS
2) Each calibration point must be within $100/$ of the	After Span Adjust - 1	1.2%	0.5%	1.2%
2) Each calibration point must be within ±10% of the expected criteria		PASS	PASS	PASS
	After Span Adjust - 2	2.5%	0.6%	1.6%
3) As found calibration point must be within $\pm 10\%$ of the		PASS	PASS	PASS
expected criteria	After Span Adjust - 3	3.9%	1.7%	2.3%
		PASS	PASS	PASS
4) Analyzer must run within ±10%	Slope	1.009	1.007	0.995
of the manufacturer's specifications		PASS	PASS	PASS
5) Slope must be ≥ 0.90 and ≤ 1.10	Intercept	1.69	0.60	0.00
		PASS	PASS	PASS
6) Intercept must be = 3% of full range of analyzer	Correlation	1.000	1.000	1.000
		PASS	PASS	PASS
7) Correlation coefficient must be = 0.9950	_			
8) Converter efficiency 96-104%				
NOx According to BC M	OE Guidelines this calibration has F	PASSED	1	
NO According to BC M	OE Guidelines this calibration has F	PASSED		
NO2 According to BC M	OE Guidelines this calibration has F	PASSED		
Calibration Performed by: Brad Moyles Comments: Routine Calibration				

Analyzer Maintenance Log							
Thermo Scientific 450i/43i/42i/45C/43C							
Maintenance Item	Frequency Due	Completed (Y/N)	Date Last Completed	Date of Next Check/Service			
In-line particulate filter changeout	Bi-Monthly	Y	2025-02-12	2025-04-30			
Visual inspection and cleaning (loose connectors and fittings, cracked/clogged Teflon lines, excessive dirt and dust inside)	Bi-Monthly	Y	2025-02-12	2025-04-30			
Leak test	Bi-Monthly	Y	2024-11-27	2025-04-30			
Fan filter inspection and cleaning	Bi-Monthly	Y	2025-02-12	2025-04-30			
Analyzer pump check (flow check) and replacement	Annually	N		2025-09-03			
Perm tube check (stability) and replacement	Annually	Y	2024-09-03				
Zero charcoal replaced	Annually	Y	2024-09-03				
SO2 scrubber beads replaced - 450i/45C ONLY	Annually			2025-09-03			
Inspect and replace spent absorbent material (Drierite, silica gel) - 42i ONLY	Annually			2025-09-03			

	G	36	СТ Г	abora	atorie	es	el	.og Repo	ort	
Station			Woodfibre LNG			Project #				
Date		Febru	ary 12, 2025		Time In	6:4	40	Time Out		10:00
Wea						Technicia	n On Site		BM	
LOG DETAILS										
Installed silica gel scrubber inside analyzer to help remove moisture in the air sample due to										
	-	o the ocea	-	op						
Replaced 2	Zero Ai	r Scrubber	with a Canister t	hat has	half Cha	arcoal and ha	alf Purifil.			
				Routi	ine Calik	oration				
As Founds	5 NO, N	ох				IO2 GPT				
					G	iPT As Found	I = PASS			
						onverter Eff	icioncy 10	0%		
							iciency 10	078		
Calibratio		<u></u>								
Point 1, 2,	3 = PA	.33			_					
INTERNAL	.z/s				INTERNAL Z/S					
AT (Δ°	°C)	NA	ST (Δ°C)	NA		DRDAS vs A VS (Δkm/h)		١٨.	/D	okay
Visual cl		Y	Visual check	Y		Lups turning	Y		free	Y
Calibra		NA	Calibrated	NA		Calibrated	NA		rated	NA
					ion Che					
Flagge			ration Mode	Y		· · · ·	ines Reco			Y
		fold Flow (Y Y			anifold Cle			Y Y
		ed Sample stems Fund		Y Y		PC Fan Running Station Housekeeping				Y Y
			olling Active	Y		Monitor Off			Ŷ	
		R DAS Dat		Y		Н	IVAC Chec	k		Y

Appendix D Air Quality Exceedance Report

Memo

То:	Ross McCann (Regulatory Project Specialist), Ryan Schucroft (Environmental Site Lead), Jackie Boruch (Environmental Site Lead), Ian McAllister (Compliance Manager) Woodfibre LNG General Partner Inc.	From:	Dr. Kashif Choudhry, Senior Atmospheric Engineer Dan Jarratt Air Quality Technical Area Leader Canada Stantos Consulting Ltd
Draigat/File	10000160 10 0005 000	Deter	Stantec Consulting Ltd.
Project/File.	123222160 12.2025.300	Date:	March 14, 2025

Reference: WLNG Air Quality Exceedance Report for PM₁₀ – February 20, 2025

Executive Summary

This report investigates the exceedance of the 24-hour British Columbia Ambient Air Quality Objectives (BCAQO) for PM₁₀, which has a threshold of 50 μ g/m³. PM₁₀ concentrations, recorded at the Woodfibre LNG Air Quality Monitoring Station (AQMS) using Met One Instrument BAM 1020s, reached a 24-hour average of 53.0 μ g/m³, with elevated hourly concentrations noted from 10:00 to 18:00 PDT. Wind conditions, regional PM₁₀ data, and onsite work activities were analyzed to determine the likely sources of air quality exceedance, which were attributed to project-related activities. Based on the locations of the emission sources and the wind direction during the period of elevated concentrations, the exceedance of the 24-hour PM₁₀ BCAQO was primarily attributed to emissions from construction activities, including rock crushing, hauling, and stockpiling work. Despite prevailing winds from the northwest, no dust plumes were observed or reported reaching the Floatel. The exceedance is primarily linked to project-related activities.

1 Introduction

This report assesses the PM₁₀ exceedance observed on February 20, 2025, at the Woodfibre LNG AQMS and examines the environmental and project-related factors contributing to the elevated concentrations. This analysis considers local meteorology data, onsite activities, and regional air quality data comparisons to identify the potential sources of the elevated PM₁₀ concentrations. The Langdale Elementary regional ambient air quality monitoring station provides off-site PM₁₀ concentrations for comparison.

2 Data Collection and Methodology

- Guideline Criteria Exceeded:
 - 24-hour BC Air Quality Objective for PM₁₀: 50 μg/m³
- Actual Reading recorded at Woodfibre LNG AQMS:
 - PM₁₀ (24-hr average): 53.0 µg/m³

Reference: WLNG Air Quality Exceedance Report for PM10 – February 20, 2025

Elevated PM10 hourly concentrations were recorded from 10:00 to 18:00 hours.

- Climatic Conditions:
 - Wind Speed: 24-hour average of 0.7 m/s; range of 0.4 1.0 m/s
 - Wind Direction: Predominantly from the northwest
 - Total Precipitation (24-hours): 5.0 mm

Data collection included hourly PM₁₀ and TSP readings from the Woodfibre LNG AQMS, hourly wind speed and wind direction measurements from Woodfibre LNG meteorology station, and regional PM₁₀ data from the British Columbia Ministry of Environment (BC MOE) Langdale Elementary air quality monitoring station. A North American smoke forecast from firesmoke.ca was also reviewed to assess the potential impacts of wildfire smoke. Onsite activity logs provided insight into the dust-generating activities that may have influenced the local ambient air quality.

3 Air Quality Exceedance Investigation

The observed PM_{10} air quality exceedances was compared to regional air quality and local weather stations.

Figure 1 shows that PM_{10} concentrations recorded at the Woodfibre LNG air quality station on February 20, 2025, did not correlate with wind speed. The maximum hourly average wind speed measured at the onsite Meteorology Station was 1.0 m/s, blowing predominantly from the northwest quadrant (Figure 2). Figure 3 compares the PM_{10} concentrations recorded at the Woodfibre LNG AQMS to the regional Langdale Elementary air quality station operated by BC MOE. The PM_{10} concentrations at the Woodfibre LNG site were higher than those recorded at the Langdale Elementary regional air quality station, particularly between 10:00 and 18:00 hours. Figure 3 also shows that the 24-hour average PM_{10} concentration recorded at AQMS (53 µg/m³) was approximately six times higher than at Langdale Elementary (8.3 µg/m³), further demonstrating the overall difference in air quality between the two locations.

Woodfibre LNG informed Stantec of various dust-generating activities around the AQMS in February 2025. During the day shift (07:00 to 17:00), activities included loading and hauling sifted rock material from the 1100 Area (northeast of AQMS) to the 4200 Area (north-northwest of AQMS) for crushing and processing, hammering oversized rock, and rock-breaking operations. In the 4100 Area (northwest of AQMS, highlighted with a red circle in Figure 4), Type D material was hauled to the firewater (FW) tank footprint to facilitate crushing operations, and a dozer managed and stacked the stockpile. During the night shift (19:00 to 05:00), crushing and rock-breaking continued in the 4200 Area (north-northwest of AQMS). Woodfibre LNG reported that no visible dust plumes were observed or reported on February 20, 2025. These operations contributed to the observed PM₁₀ exceedance at the AQMS station (see Figure 4 for a summary of the onsite work activities across the construction site).

Figure 2 presents a wind rose showing the predominant wind direction during February 20, 2025, indicating wind patterns that likely dispersed particulates (fugitive dust) from the north-northwest. This aligns with dust-generating activities reported near the AQMS.

Reference: WLNG Air Quality Exceedance Report for PM10 – February 20, 2025

The North American smoke forecast at firesmoke.ca did not indicate that wildfire smoke affected air quality at the Woodfibre LNG Site on February 20, 2025 (Figure 5). For reference, the 4100 Area (highlighted with a red circle in Figure 4) is located northwest of the AQMS, with the Floatel positioned to the south-southeast of the 4100 Area and west-southwest of the AQMS station. On February 20, 2025, the wind predominantly blew from the northwest quadrant toward the AQMS station. Given this wind direction, blowing dust from the 4100 Area (highlighted with a red circle), it is likely that it could have been transported toward the Floatel. However, no complaints were received by Woodfibre LNG from the Floatel residents.

4 Conclusion

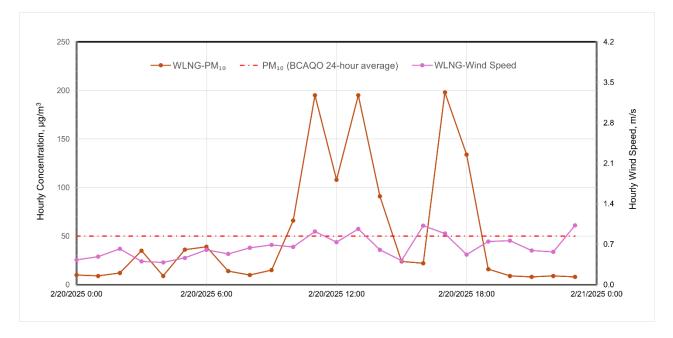
In conclusion, the PM₁₀ air quality exceedance recorded at the Woodfibre LNG site on February 20, 2025, can be attributed to dust-generating project-related construction activities, such as rock crushing, mucking, excavation, and hauling of material in the 4100 Area. Predominant winds from the northwest quadrant likely contributed to the increased PM₁₀ concentrations observed by the AQMS during this period. Therefore, the PM₁₀ exceedance is primarily attributable to the construction project-related sources.

Regards,

Stantec Consulting Ltd.

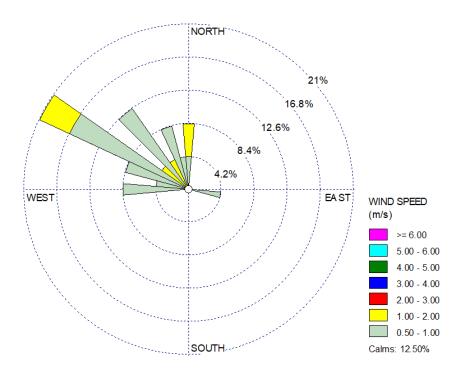
Dr. Kashif Choudhry Ph.D., P.Eng. Senior Atmospheric Engineer Phone: (306) 667-2588 Mobile: (306) 717-2435 Kashif.Choudhry@stantec.com

stantec.com

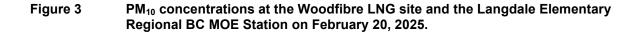

Attachments: A: Figures

Dan Jarratt EP, P.Eng. (AB, BC) Air Quality Technical Area Leader Canada Phone: (604) 235-1897 Mobile: (236) 818-4067 Dan.Jarratt@statnec.com

Reference: WLNG Air Quality Exceedance Report for PM10 – February 20, 2025


Attachment A Figures

Reference: WLNG Air Quality Exceedance Report for PM10 – February 20, 2025



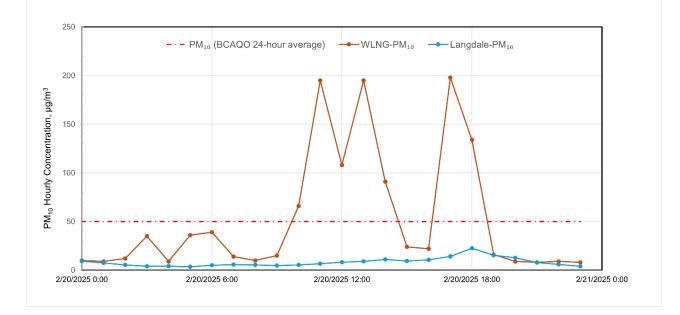

Figure 1 PM₁₀ concentrations and wind speed at the Woodfibre LNG site on February 20, 2025

Figure 2 Windrose for the Woodfibre LNG Meteorology Station, February 20, 2025.

Reference: WLNG Air Quality Exceedance Report for PM10 – February 20, 2025

Reference: WLNG Air Quality Exceedance Report for PM10 – February 20, 2025

Figure 4 Details of the Woodfibre LNG Onsite Daily Work (Construction) Activities for February 20, 2025.

On-site Work Activities

Day Shift (7am-5pm)

- Continued loading rock trucks with sifted rock material in the 1100 Area, the material was hauled to the LT Subcontractor's (Kode) stockpile in the 4200 Area to be crushed and processed into Type D material.
- An excavator started mucking and licking bedrock with a tire in the 1100 Area, all oversized material was cast into stockpile to be hammered.
 An excavator continued to hammer oversized rock in the 1100 Aera.
- An excavator continued to nammer oversized rock in the 1100 Aera.
 An excavator continued loading rock trucks with Type D material from the LT Subcontractor's (Kode) stockpile in the 4200 Area, the material was hauled to the FW tank footprint in the 4100 Area to help facilitate the crushing operations.
- The Dozer continued managing and stacking the stockpile in the 4100
 Area.
- An excavator hammered the exposed foundation in the trench for OUT-10.

Night Shift (7pm-5am)

Area 4200: Crushing ad rock breaking

Reference: WLNG Air Quality Exceedance Report for PM10 – February 20, 2025

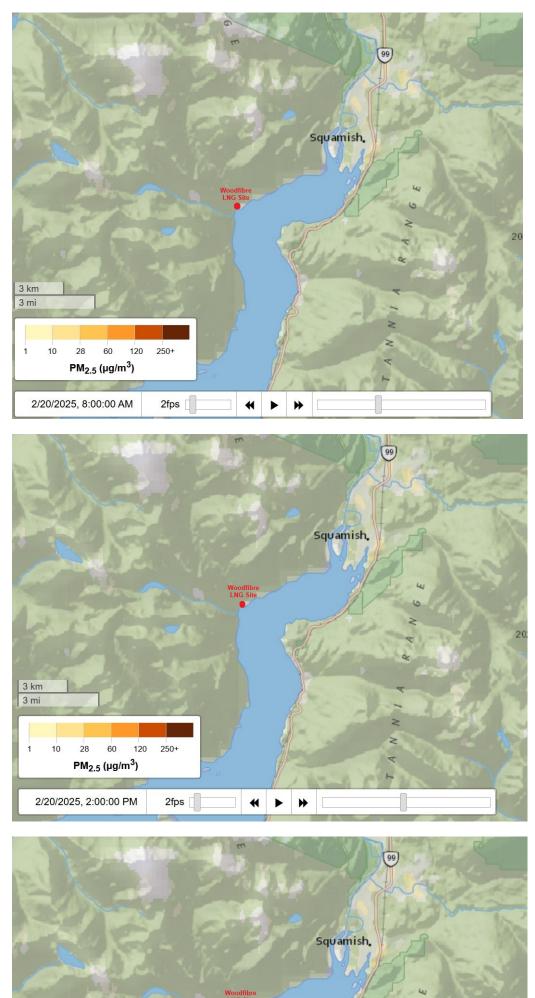


Figure 5 Smoke modelling output (forecast for 8:00 am, 2:00 pm, and 7:00 pm) for February 20, 2025.

3 km 3 mi 1 10 28 60 120 250+ PM _{2.5} (μg/m ³)	N N N N
	1
2/20/2025, 7:00:00 PM 2fps	▶

Note

The timestamps in the figure are based on Saskatchewan time, which observes Central Standard Time (CST) year-round, with no Daylight-Saving Time (DST) adjustment.

Appendix E

Weekly AQMS Reports

WLNG AQMS - Weekly Reporting

Reporting Period

This AQMS Weekly report covers the period from February 3 to February 9, 2025.

Objective

This report summarizes the air quality monitoring data for the week of February 3 to February 9, 2025. This report includes an analysis of pollutants such as PM_{2.5}, PM₁₀, TSP, and NO₂, highlighting any significant dust events, alerts from the Air Quality Monitoring Station (AQMS), and changes to the monitoring network and mitigation measures. Additionally, the report documents the results of any investigations into alerts or equipment failures, detailing the actions taken or plans for resolution because these are reasonable efforts to maintain compliance with environmental standards and support the ongoing air quality management efforts.

Summary of Onsite Air Quality and Meteorological Data Collected

This section presents four summary tables for the air quality and meteorology data. The data is based on a Level 0 verification, indicating that it has undergone preliminary checks for completeness and accuracy.

Table 1: Summary of Daily Results for the Past 7 Days

	PM _{2.5} (µg/m ³)		PM ₁₀ (µg/m ³)			TSP (µg/m ³)]	NO ₂ (ppb))	
Date	1-hr Min	1-hr Max	24-hr Avg	1-hr Min	1-hr Max	24-hr Avg	1-hr Min	1-hr Max	24-hr Avg	1-hr Min	1-hr Max	24-hr Avg
Feb 3	3	12	6.6	8	40	18.2	8	87	31.9	1.6	12.3	7.5
Feb 4	3	11	6.8	8	79	19.7	9	236	48.5	0.0	22.4	6.6
Feb 5	3	13	6.0	8	29	13.4	13	81	28.9	0.0	20.7	6.5
Feb 6	2	10	5.5	5	28	11.3	11	81	28.3	1.8	13.0	6.9
Feb 7	1	9	5.1	3	29	11.7	9	81	28.3	0.0	12.4	5.4
Feb 8	3	8	5.1	5	12	8.5	10	31	16.4	0.0	5.5	2.0
Feb 9	0	9	4.4	5	18	9.1	11	55	18.7	0.7	7.4	3.6

Note: The British Columbia Air Quality Objectives (AQO) are:

• PM_{2.5}: 25 μg/m³ - Achievement based on annual 98th percentile of daily average, averaged over one year.

• PM_{10} : 50 µg/m³ - Achievement based on the daily (24-hr) average.

• TSP: $120 \,\mu g/m^3$ - Achievement based on the daily (24-hr) average.

• NO₂: 60 ppb - Achievement based on annual 98th percentile of daily 1-hour average maximum (D1HM), averaged over three consecutive years.

Bold Italic numbers indicates that the 24-hour average for PM or one or more 1-hour maximum values for NO₂ exceed the respective threshold values.

Table 2: Weekly Averages Summary – PM2.5, PM10, TSP and NO2

	55			<i>y</i> = = = = = = = = = = = = = = = = = = =			
Pollutant	units	1-hr Min	1-hr Max	Weekly average	Trigger Limits (2/3 of the AQO)	Time Above Trigger Limit (Days)	Time Above AQO (Days)
PM _{2.5}	$\mu g/m^3$	0	13	5.7	16.7 (24-hr avg)	0	0
PM10	$\mu g/m^3$	3	79	13.1	33.3 (24-hr avg)	0	0
TSP	$\mu g/m^3$	8	236	28.7	80 (24-hr avg)	0	0
NO ₂	ppb	0.0	22.4	5.5	40 (1-hr avg max)	0	0

Table 3: Summary of Meteorological Station Results

Date	Wind S	peed (m/s)	Ambi	ent Temperat	ture (°C)	Total Precipitation	
Date	Max	24-hr Avg	Min	Max	24-hr Avg	(mm)	
Feb 3	11.9	3.5	-7.3	-3.9	-5.7	0.0	
Feb 4	9.9	2.2	-6.6	-1.0	-4.3	0.0	
Feb 5	8.9	2.1	-7.5	-1.3	-4.5	0.0	
Feb 6	9.7	1.9	-5.9	1.4	-3.2	0.6	
Feb 7	7.3	1.7	-6.0	3.1	-1.9	2.2	
Feb 8	5.6	1.3	-1.6	5.2	0.2	4.8	
Feb 9	7.2	1.3	-3.5	1.8	-1.0	1.4	

Table 4: P	Table 4: Passive SO2 and VOC Sampling											
Date	Sampled Swapped (Yes/No)	Chain of Custody (COC) Submitted (Yes/No)	Sample Submitted to AGAT Lab (Yes/No)	Lab Results Received (Yes/No)	Lab Results Summary or Comments							
3-Feb to 9-Feb	No	No	No	No	No sample swap or lab analysis was performed during this period.							

Note: This table mostly contains "No" entries because SO_2 and VOC passive samples are swapped on a monthly basis, and this reporting period may not coincide with the sampling schedule. Passive samples were swapped on January 7, 2025.

On-Site Dust Observation Report and Work Activities Details

Dust Observation Report Summary:

For this report: No dust observation report was received for this period.

Work Activities Details:

According to the Daily Construction Reports from Feb 3 to Feb 9, construction activities include, sifting, breaking and loading out rock from Area 1100, hauling to the Kode Crusher, breaking rock in Area 4200 and Kode Area.

Category	Details	Action Taken	Resolution Status / Anticipated Completion Date		
AQ Exceedances Report	No AQ exceedances recorded for this period.	No Action required.	Not Applicable.		
AQ Complaints	No AQ complaints received during this period.	No Action required.	Not Applicable.		
Alerts from the AQMS	No alarms or instrument break-down was reported from AGAT during this period.	No Action required.	Not Applicable.		
Changes to the Monitoring Network	No changes to the monitoring network during this period.	Not Applicable.	Not Applicable.		
Changes to Mitigation Measures	No changes to mitigation measures during this period.	Not Applicable.	Not Applicable.		

In summary, all instruments operated as intended, successfully collecting air quality data throughout the reporting period. No air quality exceedances of the British Columbia Air Quality Objectives were recorded, and no further investigation was required.

WLNG AQMS - Weekly Reporting

Reporting Period

This AQMS Weekly report covers the period from February 10 to February 16, 2025.

Objective

This report summarizes the air quality monitoring data for the week of February 10 to February 16, 2025. This report includes an analysis of pollutants such as PM_{2.5}, PM₁₀, TSP, and NO₂, highlighting any significant dust events, alerts from the Air Quality Monitoring Station (AQMS), and changes to the monitoring network and mitigation measures. Additionally, the report documents the results of any investigations into alerts or equipment failures, detailing the actions taken or plans for resolution because these are reasonable efforts to maintain compliance with environmental standards and support the ongoing air quality management efforts.

Summary of Onsite Air Quality and Meteorological Data Collected

This section presents four summary tables for the air quality and meteorology data. The data is based on a Level 0 verification, indicating that it has undergone preliminary checks for completeness and accuracy. **Table 1: Summary of Daily Results for the Past 7 Days**

_	PM _{2.5} (µg/m ³) ¹			PM ₁₀ (µg/m ³)			TSP ($\mu g/m^3$) ²			NO ₂ (ppb) ³		
Date	1-hr Min	1-hr Max	24-hr Avg	1-hr Min	1-hr Max	24-hr Avg	1-hr Min	1-hr Max	24-hr Avg	1-hr Min	1-hr Max	24-hr Avg
10 Feb	1	15	5.3	6	30	12.0	10	67	25.8	0.2	11.3	3.9
11 Feb	1	9	5.1	6	28	12.9	-	-	-	0.0	4.0	1.0
12 Feb	0	13	3.9	4	14	8.8	-	-	-	-	-	-
13 Feb	0	15	5.5	6	17	9.8	-	-	-	4.3	15.9	9.6
14 Feb	3	12	7.3	8	62	14.5	-	-	-	2.9	26.2	13.8
15 Feb	1	13	6.5	7	66	15.3	-	-	-	1.4	15.8	8.7
16 Feb	1	20	6.3	3	235	28.9	-	-	-	1.7	19.1	8.0

Note: The British Columbia Air Quality Objectives (AQO) are:

• $PM_{2.5}$: 25 μ g/m³ - Achievement based on annual 98th percentile of daily average, averaged over one year.

PM₁₀: 50 μ g/m³ - Achievement based on the daily (24-hr) average.

TSP: $120 \,\mu\text{g/m}^3$ - Achievement based on the daily (24-hr) average.

• NO₂: 60 ppb - Achievement based on annual 98th percentile of daily 1-hour average maximum (D1HM), averaged over three consecutive years.

Bold Italic numbers indicates that the 24-hour average for PM or one or more 1-hour maximum values for NO₂ exceed the respective threshold values. ¹ As of February 11, the BAM $PM_{2.5}$ instrument's sampling time was changed from 42 minutes to 50 minutes. Since then, it has been operating as a non-designated method for $PM_{2.5}$ monitoring.

Data is unavailable due to the TSP BAM sampler being unable to collect valid data during this period.

NO2 valid data available on February 12 did not meet the 75% requirement due to quarterly maintenance and calibration.

Table 2: Weekly Averages Summary – PM2.5, PM10, TSP and NO2

		1-hr	1-hr	Weekly	Trigger Limits (2/3 of	Time Above Trigger	Time Above AQO
Pollutant	units	Min	Max	average	the AQO)	Limit (Days)	(Days)
PM _{2.5}	$\mu g/m^3$	0	20	5.7	16.7 (24-hr avg)	0	0
PM10	$\mu g/m^3$	3	235	14.6	33.3 (24-hr avg)	0	0
TSP ¹	$\mu g/m^3$	10	67	25.8	80 (24-hr avg)	0	0
NO_2	ppb	0.0	26.2	7.5	40 (1-hr avg max)	0	0

Note: 1 The TSP weekly average is based on data collected from a single day, February 10, 2025.

Table 3: Summary of Meteorological Station Results

Date	Wind S	peed (m/s)	Ambi	ent Tempera	Ambient Temperature (°C)				
Date	Max	24-hr Avg	Min	Max	24-hr Avg	Total Precipitation (mm)			
10 Feb	9.8	2.8	-5.6	4.0	-2.1	0.2			
11 Feb	8.5	2.1	-6.6	2.3	-3.1	0.2			
12 Feb	6.8	1.5	-6.1	4.3	-1.9	0.0			
13 Feb	7.8	2.0	-4.3	7.3	0.5	0.0			
14 Feb	6.4	1.4	-1.8	7.8	1.7	0.0			
15 Feb	4.4	0.9	-0.5	2.0	1.0	4.2			

16 Eab 2.7 0.0 0.4 4.0 2.2							
10 Feb 3.7 0.9 0.4 4.8 2.2 6.6	16 Feb	3.7	0.9	0.4	4.8	2.2	6.6

Table 4: Passive SO2 and VOC Sampling

1 abic 7.1	assive SO ₂ al	lu VOC Sampling			
Date	Sampled Swapped (Yes/No)	Chain of Custody (COC) Submitted (Yes/No)	Sample Submitted to AGAT Lab (Yes/No)	Lab Results Received (Yes/No)	Lab Results Summary or Comments
10-Feb to 16-Feb	No	No	No	No	No sample swap or lab analysis was performed during this period.

Note: This table mostly contains "No" entries because SO₂ and VOC passive samples are swapped on a monthly basis, and this reporting period may not coincide with the sampling schedule. Passive samples were swapped on February 7, 2025, and shipped to AGAT Labs.

On-Site Dust Observation Report and Work Activities Details

Dust Observation Report Summary:

For this report: No dust observation report was received for this period.

Work Activities Details:

According to the Daily Construction Reports from Feb 10 to Feb 16, construction activities include, breaking and sifting in the Area 1100, breaking rock in Area 4200, breaking and stacking material in the KODE area, backfilling in the MOF area and Area 4100 hole.

Summary of Daily Reports and Action Taken

AGAT Labs swapped and completed the quarterly calibration of the TSP BAM unit on February 11, 2025. However, the TSP BAM sampler has been unable to collect valid data since February 11, and AGAT is scheduling AQMS visit to resolve the issue with the TSP BAM air sampler. The $PM_{2.5}$ BAM and NO-NO₂-NO_x gas analyzer units were calibrated on February 12, 2025, and the PM_{10} BAM was calibrated on February 13, 2025. Currently, AGAT is unable to collect data remotely from the PM_{10} BAM due to a communication issue. WLNG field personnel will manually retrieve data from the PM_{10} BAM during weekly checks and send it to AGAT for review.

Category	Details	Action Taken	Resolution Status / Anticipated Completion Date
AQ Exceedances Report	No AQ exceedances recorded for this period.	No Action required.	Not Applicable.
AQ Complaints	No AQ complaints received during this period.	No Action required.	Not Applicable.
Alerts from the AQMS	No alarms or instrument break-down was reported from AGAT during this period.	No Action required.	Not Applicable.
Changes to the Monitoring Network	No changes to the monitoring network during this period.	Not Applicable.	Not Applicable.
Changes to Mitigation Measures	No changes to mitigation measures during this period.	Not Applicable.	Not Applicable.

In summary, all instruments successfully collected air quality data throughout the reporting period, except for the TSP BAM sampler, which has not collected valid data since February 11, 2025. As of February 11, the BAM $PM_{2.5}$ instrument's sampling time was changed from 42 minutes to 50 minutes. Since then, it has been operating as a non-designated method for $PM_{2.5}$ monitoring. A site visit is planned for March 25 to March 28 to swap the malfunctioning TSP unit with the spare BAM TSP unit and adjust the BAM $PM_{2.5}$ sampling time from 50 minutes to 42 minutes to meet the United States Environmental Protection Agency (US EPA) Federal Equivalent Method (FEM) requirements for $PM_{2.5}$ monitoring. No air quality exceedances of the British Columbia Air Quality Objectives were recorded, and no further investigation was required.

WLNG AQMS - Weekly Reporting

Reporting Period

This AQMS Weekly report covers the period from February 17 to February 23, 2025.

Objective

This report summarizes the air quality monitoring data for the week of February 17 to February 23, 2025. This report includes an analysis of pollutants such as PM_{2.5}, PM₁₀, TSP, and NO₂, highlighting any significant dust events, alerts from the Air Quality Monitoring Station (AQMS), and changes to the monitoring network and mitigation measures. Additionally, the report documents the results of any investigations into alerts or equipment failures, detailing the actions taken or plans for resolution because these are reasonable efforts to maintain compliance with environmental standards and support the ongoing air quality management efforts.

Summary of Onsite Air Quality and Meteorological Data Collected

This section presents four summary tables for the air quality and meteorology data. The data is based on a Level 0 verification, indicating that it has undergone preliminary checks for completeness and accuracy.

PM_{2.5} (µg/m³)¹ TSP ($\mu g/m^3$)² PM10 (µg/m³) NO₂ (ppb) Date 1-hr 24-hr 1-hr 24-hr 1-hr 1-hr 24-hr 1-hr 24-hr 1-hr 1-hr 1-hr Min Max Avg Min Max Avg Min Max Avg Min Max Avg 17 Feb 13 5.5 91 18.6 _ 0.0 17.9 7.4 1 6 18 Feb 2 12 6.1 8 87 17.9 3.5 20.5 10.9 _ _ -19 Feb 3 15 8.2 7 113 30.1 _ _ _ 4.7 31.7 12.3 20 Feb 23 9.5 198 53.0 1 8 6.8 34.7 16.4 21 Feb 0 8 3.7 8 16 11.3 _ _ _ 29.1 14.6 6.0 2 12 8 22 Feb 7.5 80 21.68.9 33.9 19.5 -_ -23 Feb 2 12 5 93 16.5 0.0 25.2 13.0 6.3

 Table 1: Summary of Daily Results for the Past 7 Days

Note: The British Columbia Air Quality Objectives (AQO) are:

• PM_{2.5}: 25 µg/m³ - Achievement based on annual 98th percentile of daily average, averaged over one year.

• PM₁₀: 50 µg/m³ - Achievement based on the daily (24-hr) average.

• TSP: $120 \ \mu g/m^3$ - Achievement based on the daily (24-hr) average.

• NO2: 60 ppb - Achievement based on annual 98th percentile of daily 1-hour average maximum (D1HM), averaged over three consecutive years.

Bold Italic numbers indicates that the 24-hour average for PM or one or more 1-hour maximum values for NO₂ exceed the respective threshold values. ¹ As of February 11, the BAM PM2.5 instrument's sampling time was changed from 42 minutes to 50 minutes. Since then, it has been operating as a non-designated

nethod for PM2.5 monitoring.

Data is unavailable due to the TSP BAM sampler being unable to collect valid data during this period.

Table 2: Weekly Averages Summary – PM2.5, PM10, TSP and NO2

Tuble 21 Tre	ening rave	rugebb	ummun	i j 1 1 1 2 3 ; 1 1 1 1 0 ; 1 0 1 u 1 0 2						
Pollutant	units	1-hr Min	1-hr Max	Weekly average	Trigger Limits (2/3 of the AQO)	Time Above Trigger Limit (Days)	Time Above AQO (Days)			
PM _{2.5}	$\mu g/m^3$	0	23	6.7	16.7 (24-hr avg)	0	0			
PM ₁₀	$\mu g/m^3$	5	198	24.1	33.3 (24-hr avg)	1	1			
TSP ¹	$\mu g/m^3$	-	-	-	80 (24-hr avg)	-	-			
NO_2	ppb	0.0	34.7	13.4	40 (1-hr avg max)	0	0			

Note: ¹ Data is unavailable due to the TSP BAM sampler being unable to collect valid data during this period.

Table 3: Summary of Meteorological Station Results

Date	Wind S	peed (m/s)	Ambi	ient Tempera	ture (°C)	Total Precipitation
Date	Max	24-hr Avg	Min	Max	24-hr Avg	(mm)
17 Feb	4.9	1.0	1.4	10.0	4.3	0.0
18 Feb	6.0	0.9	2.5	8.8	4.7	0.4
19 Feb	7.0	1.1	3.1	8.2	4.8	37.0
20 Feb	3.4	0.7	3.8	8.0	5.6	5.0
21 Feb	4.4	0.9	3.9	5.0	4.4	51.8
22 Feb	6.4	1.0	4.2	8.4	5.4	53.2

23 Feb	13.9	1.5	4.4	10.6	7.3	13.4

Table 4: Passive SO2 and VOC Sampling

Date	Sampled Swapped (Yes/No)	Chain of Custody (COC) Submitted (Yes/No)	Sample Submitted to AGAT Lab (Yes/No)	Lab Results Received (Yes/No)	Lab Results Summary or Comments
17-Feb to 23-Feb	No	No	No	No	No sample swap or lab analysis was performed during this period.

Note: This table mostly contains "No" entries because SO_2 and VOC passive samples are swapped on a monthly basis, and this reporting period may not coincide with the sampling schedule. Passive samples were swapped on February 7, 2025, and shipped to AGAT Labs.

On-Site Dust Observation Report and Work Activities Details

Dust Observation Report Summary:

Summary of Daily Reports and Action Taken

For this report: No dust observation report was received for this period.

Work Activities Details:

Measures

According to the Daily Construction Reports from Feb 17 to Feb 23, construction activities include, breaking rock in Area 1100 and Kode area, hauling and sorting rock from the Area 1100 to Area 4200, offloading the Type D from the barge to Area 4100, backfilling in MOF and Area 4100, piping excavation for FIWP-002, NCS water management at the east and west ponds, wash car top ups, site clean-up and fueling ongoing.

Category Details Action Taken **Resolution Status / Anticipated Completion Date** AO An air quality exceedance was AQ exceedance report Completed on March 17, 2025. Exceedances recorded on February 20, 2025, with a was prepared. Report PM_{10} value of 53.0 µg/m³, which was greater than the BCAQO. AQ No AQ complaints received during No Action required. Not Applicable. Complaints this period. Alerts from No alarms or instrument break-down No Action required. Not Applicable. the AOMS was reported from AGAT during this period. Changes to No changes to the monitoring network Not Applicable. Not Applicable. during this period. the Monitoring Network Not Applicable. Changes to No changes to mitigation measures Not Applicable. Mitigation during this period.

In summary, all instruments successfully collected air quality data throughout the reporting period, except for the TSP BAM sampler, which has not collected valid data since February 11, 2025. As of February 11, the BAM PM_{2.5} instrument's sampling time was changed from 42 minutes to 50 minutes. Since then, it has been operating as a non-designated method for PM_{2.5} monitoring. A site visit is planned for March 25 to March 28 to swap the malfunctioning TSP unit with the spare BAM TSP unit and adjust the BAM PM_{2.5} sampling time from 50 minutes to 42 minutes to meet the United States Environmental Protection Agency (US EPA) Federal Equivalent Method (FEM) requirements for PM_{2.5} monitoring. No air quality exceedances of the British Columbia Air Quality Objectives were recorded, and no further investigation was required. Data could not be collected remotely from the PM₁₀ BAM due to a communication issue; therefore, it was collected manually using a USB. Stantec received the PM₁₀ data from AGAT on March 5, 2025. An air quality exceedance of the British Columbia Air Quality Objectives was recorded for PM₁₀ on February 20, 2025, and therefore, an air quality exceedance report was prepared.

WLNG AQMS - Weekly Reporting

Reporting Period

This AQMS Weekly report covers the period from February 24 to March 02, 2025.

Objective

This report summarizes the air quality monitoring data for the week of February 24 to March 02, 2025. This report includes an analysis of pollutants such as PM_{2.5}, PM₁₀, TSP, and NO₂, highlighting any significant dust events, alerts from the Air Quality Monitoring Station (AQMS), and changes to the monitoring network and mitigation measures. Additionally, the report documents the results of any investigations into alerts or equipment failures, detailing the actions taken or plans for resolution because these are reasonable efforts to maintain compliance with environmental standards and support the ongoing air quality management efforts.

Summary of Onsite Air Quality and Meteorological Data Collected

This section presents four summary tables for the air quality and meteorology data. The data is based on a Level 0 verification, indicating that it has undergone preliminary checks for completeness and accuracy.

Table 1: Summary of Daily Results for the Past 7 Days

_	PM ₂		$)^{1}$	P	M10 (µg/1	n ³)	TS	SP (µg/m	$(^{3})^{2}$]	NO ₂ (ppb))
Date	1-hr Min	1-hr Max	24-hr Avg	1-hr Min	1-hr Max	24-hr Avg	1-hr Min	1-hr Max	24-hr Avg	1-hr Min	1-hr Max	24-hr Avg
24 Feb	3	14	6.0	8	111	21.5	-	-	-	1.9	26.0	12.7
25 Feb	1	6	3.8	5	29	10.8	-	-	-	0.0	37.5	11.3
26 Feb	0	10	4.5	6	64	15.7	-	-	-	0.0	17.9	7.8
27 Feb	1	9	5.0	5	16	11.3	-	-	-	1.1	22.1	7.2
28 Feb	0	6	3.0	5	47	11.8	-	-	-	0.0	25.7	5.5
01 Mar	0	10	4.6	5	38	13.1	-	-	-	0.0	21.5	7.8
02 Mar	2	12	6.6	9	32	15.1	-	-	-	0.0	14.6	4.5

Note: The British Columbia Air Quality Objectives (AQO) are:

• PM_{2.5}: 25 µg/m³ - Achievement based on annual 98th percentile of daily average, averaged over one year.

• PM_{10} : 50 µg/m³ - Achievement based on the daily (24-hr) average.

• TSP: $120 \,\mu g/m^3$ - Achievement based on the daily (24-hr) average.

• NO2: 60 ppb - Achievement based on annual 98th percentile of daily 1-hour average maximum (D1HM), averaged over three consecutive years.

Bold Italic numbers indicates that the 24-hour average for PM or one or more 1-hour maximum values for NO₂ exceed the respective threshold values.

As of February 11, the BAM $PM_{2.5}$ instrument's sampling time was changed from 42 minutes to 50 minutes. Since then, it has been operating as a non-designated nethod for $PM_{2.5}$ monitoring.

Data unavailable due to the TSP BAM sampler being unable to collect valid data during this period.

Table 2: Weekly Averages Summary – PM2.5, PM10, TSP and NO2

Tuble 21 Tre	chij nive	rugebb	ummun	j 1 10 12 .391	10110, 101 und 1002		
Pollutant	units	1-hr Min	1-hr Max	Weekly average	Trigger Limits (2/3 of the AQO)	Time Above Trigger Limit (Days)	Time Above AQO (Days)
PM _{2.5}	$\mu g/m^3$	0	14	4.8	16.7 (24-hr avg)	0	0
PM ₁₀	$\mu g/m^3$	5	111	14.2	33.3 (24-hr avg)	0	0
TSP ¹	$\mu g/m^3$	-	-	-	80 (24-hr avg)	-	-
NO_2	ppb	0.0	37.5	8.1	40 (1-hr avg max)	0	0

Note: ¹ Data is unavailable due to the TSP BAM sampler being unable to collect valid data during this period.

Table 3: Summary of Meteorological Station Results

Date	Wind S	peed (m/s)	Ambi	ient Temperat	ture (°C)	Total Precipitation
Date	Max	24-hr Avg	Min	Max	24-hr Avg	(mm)
24 Feb	6.0	1.5	5.6	10.3	7.4	9.2
25 Feb	4.6	1.0	5.1	11.0	7.1	15.0
26 Feb	7.5	1.3	4.7	12.7	7.8	0.8
27 Feb	4.0	0.8	4.2	8.6	6.4	0.0
28 Feb	7.4	1.1	6.4	15.1	9.0	0.0
01 Mar	4.8	0.8	4.3	14.6	7.8	0.0

02 Mar 4.8 0.8 4.7	116 70		
02 Mar 4.0 0.0 4.7	11.0 7.2	0.0	

Table 4: Passive SO2 and VOC Sampling

Date	Sampled Swapped (Yes/No)	Chain of Custody (COC) Submitted (Yes/No)	Sample Submitted to AGAT Lab (Yes/No)	Lab Results Received (Yes/No)	Lab Results Summary or Comments
24-Feb to 02-Mar	No	No	No	No	No sample swap or lab analysis was performed during this period.

Note: This table mostly contains "No" entries because SO_2 and VOC passive samples are swapped on a monthly basis, and this reporting period may not coincide with the sampling schedule. Passive samples were swapped on February 7, 2025, and shipped to AGAT Labs.

On-Site Dust Observation Report and Work Activities Details

Dust Observation Report Summary:

For this report: No dust observation report was received for this period.

Work Activities Details:

According to the Daily Construction Reports from Feb 24 to Mar 02, construction activities include, breaking rock in the 1100 sump, placing Type D in Area 1300, M02 foundation and east pond, loading out sifted blast rock from the Area 1100 and hauling to the Kode crusher, Kode stockpile management, offloading of the Type D from barge and haul to Area 4100, stockpiling at the batch plant, piping excavation for FIWP-002, excavation at the east pond and M01 foundation, placing and grading bedding sand in the utility trench in the 1200C area, washing car tops, site cleanup and fueling ongoing.

Category	Details	Action Taken	Resolution Status / Anticipated Completion Date
AQ Exceedances Report	No AQ exceedances recorded for this period.	No Action required.	Not Applicable.
AQ Complaints	No AQ complaints received during this period.	No Action required.	Not Applicable.
Alerts from the AQMS	No alarms or instrument break-down was reported from AGAT during this period.	No Action required.	Not Applicable.
Changes to the Monitoring Network	No changes to the monitoring network during this period.	Not Applicable.	Not Applicable.
Changes to Mitigation Measures	No changes to mitigation measures during this period.	Not Applicable.	Not Applicable.

In summary, all instruments successfully collected air quality data throughout the reporting period, except for the TSP BAM sampler, which has not collected valid data since February 11, 2025. As of February 11, the BAM $PM_{2.5}$ instrument's sampling time was changed from 42 minutes to 50 minutes. Since then, it has been operating as a non-designated method for $PM_{2.5}$ monitoring. A site visit is planned for March 25 to March 28 to swap the malfunctioning TSP unit with the spare BAM TSP unit and adjust the BAM $PM_{2.5}$ sampling time from 50 minutes to 42 minutes to meet the United States Environmental Protection Agency (US EPA) Federal Equivalent Method (FEM) requirements for $PM_{2.5}$ monitoring. No air quality exceedances of the British Columbia Air Quality Objectives were recorded, and no further investigation was required.

Appendix F

Passive SO2 and VOC Samples – Lab Analysis Report

3650 – 21 Street NE CALGARY, ALBERTA CANADA T2E 6V6 TEL (403)299-2000

http://www.agatlabs.com

CLIENT NAME: STANTEC CONSULTING LTD 100-75 24TH STREET EAST SASKATOON, SK S7K 0K3 ATTENTION TO: Dan Jarratt/Kashif Choudhry PROJECT: Woodfibre LNG AGAT WORK ORDER: 25C258608 AIR QUALITY MONITORING REVIEWED BY: Carmen Andrei, AQM Lab Supervisor DATE REPORTED: Mar 20, 2025 PAGES (INCLUDING COVER): 6 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (403) 299-2000

*Notes		
Diadaiman		

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Ass	sociation of Professional Engineers and Geoscientists of Alberta
(AF	PEGA)
We	stern Enviro-Agricultural Laboratory Association (WEALA)
Env	vironmental Services Association of Alberta (ESAA)

Page 1 of 6

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Air Quality Summary

AGAT WORK ORDER: 25C258608 PROJECT: Woodfibre LNG 3650 – 21 Street NE CALGARY, ALBERTA CANADA T2E 6V6 TEL (403)299-2000

http://www.agatlabs.com

CLIENT NAME: STANTEC CONSULTING LTD SAMPLING SITE:

ATTENTION TO: Dan Jarratt/Kashif Choudhry SAMPLED BY:

Parameter	Unit	Number of Samples	Peak Reading	Network Average
Ambient Sulfur Dioxide	ppbv	2	0.2	<0.2
Ambient VOC as Hexane	ppbv	2	<0.7	<0.7

Results relate only to the items tested. Results apply to samples as received.

Certificate of Analysis

AGAT WORK ORDER: 25C258608 PROJECT: Woodfibre LNG

CLIENT NAME: STANTEC CONSULTING LTD

SAMPLING SITE:

ATTENTION TO: Dan Jarratt/Kashif Choudhry

SAMPLED BY:

O/ WILLING OFFE.					
				Passive	Air Quality Sampling
DATE RECEIVED: 2025-03-10	0				DATE REPORTED: 2025-03-20
				Site#01/	
				07Feb/25,13:20	
				03Mar/25,13:10	
	S	SAMPLE DES	CRIPTION:	/SO2,TVOC	
		SAM	PLE TYPE:	FILTER	
		DATES	SAMPLED:		
Parameter	Unit	G/S	RDL	6584482	
Ambient Sulfur Dioxide	ppbv		0.2	0.2	
Ambient VOC as Hexane	ppbv		0.7	<0.7	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6584482 All samples are field blank subtracted.

Analysis performed at AGAT Calgary (unless marked by *)

Certified By:

TEL (403)299-2000 http://www.agatlabs.com

3650 - 21 Street NE

CALGARY, ALBERTA CANADA T2E 6V6

Results relate only to the items tested. Results apply to samples as received.

Certificate of Analysis

AGAT WORK ORDER: 25C258608 PROJECT: Woodfibre LNG 3650 – 21 Street NE CALGARY, ALBERTA CANADA T2E 6V6 TEL (403)299-2000

http://www.agatlabs.com

CLIENT NAME: STANTEC CONSULTING LTD

SAMPLING SITE:

ATTENTION TO: Dan Jarratt/Kashif Choudhry

SAMPLED BY:

				Pass	sive Quality /	Assurance
DATE RECEIVED: 2025-03-10						DATE REPORTED: 2025-03-20
				Site#01/DUP	BLANK/	
				07Feb/25,13:20	07Feb/25,13:20	
				03Mar/25,13:10	03Mar/25,13:10	
		SAMPLE DES	CRIPTION:	/SO2,TVOC	/SO2,TVOC	
		SAM	PLE TYPE:	FILTER	FILTER	
		DATES	SAMPLED:			
Parameter	Unit	G/S	RDL	6584483	6584484	
Ambient Sulfur Dioxide	ppbv		0.2	<0.2	<0.2	
Ambient VOC as Hexane	ppbv		0.7	<0.7	<0.7	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Calgary (unless marked by *)

3650 - 21 Street NE CALGARY, ALBERTA CANADA T2E 6V6 TEL (403)299-2000

http://www.agatlabs.com

Quality Assurance

CLIENT NAME: STANTEC CONSULTING LTD

PROJECT: Woodfibre LNG

SAMPLING SITE:

AGAT WORK ORDER: 25C258608

ATTENTION TO: Dan Jarratt/Kashif Choudhry

SAMPLED BY:

			Air	Qua	lity N	/lonit	oring								
RPT Date: Mar 20, 2025			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	l Lir	ptable nits	Recoverv	l Lir	ptable nits
		Id					Value	Lower	Upper		Lower	Upper		Lower	Upper
Passive Air Quality Sampling Ambient Sulfur Dioxide	250	6584483	0.2	<0.2	NA	< 0.2	101%	90%	110%		80%	120%	102%	80%	120%
Ambient VOC as Hexane	183	6584483	<0.7	<0.7	NA	< 0.7	100%	60%	140%	103%	60%	140%			

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. Sample spikes and duplicates are not from the same sample.

Certified By:

Page 5 of 6

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

PROJECT: Woodfibre LNG

3650 – 21 Street NE CALGARY, ALBERTA CANADA T2E 6V6 TEL (403)299-2000

http://www.agatlabs.com

Method Summary

CLIENT NAME: STANTEC CONSULTING LTD

AGAT WORK ORDER: 25C258608

ATTENTION TO: Dan Jarratt/Kashif Choudhry

			•
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Air Quality Monitoring		L	
Ambient Sulfur Dioxide	AQM-43-16007	Inhouse Method	ION CHROMATOGRAPH
Ambient VOC as Hexane	IHF-60-25003	Modified NIOSH-1500,1501,1003	GC/MS

7					3650, 21 Street NE	Laboratory Use Only	y Use Or	A	i	¢,		18
5 C	Gal Laboratories	ories	Have feedback? Scan here for a quick survey!	Iback? e for a Irvey!	P: 403.299.2000 webalr.agatlabs.com	AGAT Job Number: O	lumber:	A	7		60	×—
Chain of Cu	Chain of Custody Record											
Report Information	lon	Invoice To	Sam	Same Yes 🗆 / No 🗆	Turnaround Time Regulred (TAT)							
Company: Stantec		Company:	Stantec		Regular TAT 3 5 to 7 working days							٦ſ
Contact: Kashif	Kashif Choudhry	Contact:	accounts.payable.invoices@stantec.com and	stantec.com and	Rush TAT Cless than 24 hours			_				
· ·	100-75 24th Street East	Address:	100-75 24th Street East		24 to 48 hours			-				-
4	Saskatoon, SK, S7K 0K3		Saskatoon, SK, S7K 0K3		L 48 to / 2 hours					_	ə.	-
Phone: 474-77	474-774-0927 Fax:	Phone:	474-774-0927 Fax:		Date Required:							۶۸
121		PO/AFE#:	123222160-12-2024.300		UPON FILLING UUT HIS SECTION. THE CULENT ACCEPT THAT SUBCHARGES					PAISSE		isse¶
t Project #:	123222160-12-2024.300				WILL BE AI IACHEU TU THIS ANALISIS. IF NOT COMPLETED, REGULAR TAT WILL BE DEFAULT.	əvis)V - 9	JOV
LABORATORY USE (LAB ID #)	SITE NAME/SAMPLE DESCRIPTION	NOI	DATE/TIME INSTALLED	DATE/TIME EXTRACTED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT	NOZ Bas	PM2.5	PM 10	Duplicat	AOC b ^{se} Blank - 2	Duplicat	- Anslā
	Please Email reports to:									+	1	
	kashif.choudhry@stantec.com	com								+	1	
	daniel.casanova@stantec.com	сот					-			+		
	katie.chuen@stantec.com	c					_			+		
	dan.jarratt@stantec.com									+		
										\vdash		
	WLNG-SO2-AQMS		Eb7.2025/8:20	HOIDT 5,2024	13:10				6	+		
	WLNG-SO2-DUPLICATE		,	_					2	6	-	
	WLNG-SO2-BLANK						-		t	-	5	
	WLNG-VOC-AQMS							t				
	WLNG-VOC-DUPLICATE			-						+]	5
	WLNG-VOC-Blank		>	∢								
Consider Failmentifiered By (Print Name and Sign)	the Name and Sign)	Date/Time	Sarahara Baranad By	sceived By (Pelik Name and Sign).	VAL 1 Paratime (11	Clinet	Page	H	ď	$\left \right $	
Samples Reinquised By (Print Name and Sigh)	rint Nama and Sign)	Date/Time	Samples Received By	and My Physic Names and Sugar	internet watch	YINK Capy - Client Yellow Copy - AGAT			-	(1	
Samples Relinquished By (Print Name and Sign)	rint Name and Sign)	Date/Time	Samples Roceived By (Print Mag)	(Frint Num and Sup)	Date/Time	White Copy- AGAT		100.	0	$\overline{4}$	٨	
Document # 0IV-13-1500 005	5 Any and all products and/or services provided by AGAT	provided by AGAT La	bs are pursuant to the terms and co	unditions as set forth at W	Labs are pursuant to the terms and conditions as set forth at MMW.agatiaha.com/termagndconditions unless otherwise agreed in a current written contractual document.	sed in a current wrl	ten contractua	al document		ste Hevu	Date Revised Aug 03, 2023	2023